УДК 546.236:536.6+537.226.33

КАЛОРИМЕТРИЯ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА СЕЛЕНАТА Na₂Cd(SeO₄)₂

К.Т. Рустембеков, А.Т. Дюсекеева

Карагандинский государственный университет им. Е.А. Букетова, г. Караганда Республика Казахстан E-mail: murzabek b@mail.ru

Жидкофазным способом из карбонатов натрия, кадмия и селеновой кислоты синтезирован селенат натрия-кадмия Na₂Cd(SeO₄)₂. Методом рентгенофазового анализа определено, что соединение кристаллизуется в ромбической сингонии. В интервале 298,15...673 К измерена теплоемкость соединения и обнаружено, что при 423 К на графике зависимости C_p⁰~f(T) наблюдается резкий аномальный скачок, связанный, вероятно, с фазовым переходом второго рода. Исследования температурной зависимости диэлектрической проницаемости и электропроводности селената в интервале 298,15...673 К показали, что соединение обладает полупроводниковыми и сегнетоэлектрическими свойствами.

Ключевые слова:

Селенат, сингония, теплоемкость, диэлектрическая проницаемость, электропроводность.

Key words:

Selenate, crystal system, heat capacity, inductive capacity, electrical conduction.

В современной неорганической химии получение новых соединений, изучение их разнообразных химических и физических свойств не только обогащают наши знания о природе вещей, но и имеют практическое и прикладное значение для науки и техники. Это касается и новых неорганических соединений, потенциально обладающих ценными электрофизическими свойствами. В этом аспекте исследование химических и физико-химических свойств соединений на основе карбонатов (оксидов) щелочных, *d*-металлов и селеновой кислоты имеет теоретическое и прикладное значение в связи с их возможными уникальными электрофизическими свойствами.

Цель настоящей работы — синтез и исследование рентгенографических, термодинамических и электрофизических свойств селената натрия-кадмия.

Исследуемое соединение синтезировалось жидкофазным способом [1]. Исходными компонентами для синтеза служили карбонаты натрия, кадмия и 68 %-ная селеновая кислота марки «х.ч.» в стехиометрическом соотношении. Рентгеновскую съемку образца осуществляли на дифрактометре ДРОН-2,0 (СиК_а-излучение). Дифрактограммы порошка нового селената индицировали методом гомологии [2]. Корректность индицирования подтверждена хорошим совпадением экспериментальных и расчетных значений обратного квадрата межплоскостного расстояния 10⁴/d² (табл. 1) и согласованностью рентгеновской ρ_{penm} и пикнометрической ρ_{nuku} плотностей. По результатам индицирования определено, что соединение кристаллизуется в ромбической сингонии со следующими параметрами элементарной ячейки: *a*=5,64; *b*=26,53; c=5,77 Å; $V_{_{3Л.94}}=863,4$ Å³; Z=4; $\rho_{_{penm}}=2,68;$ $\rho_{_{пикн}}=2,61\pm0,08$ г/см³ (где $V_{_{3Л.94}}$ – объем элементарной ячейки, Z – число формульных единиц).

Плотность селената измеряли по 5 раз по методике [3] в стеклянном пикнометре объемом 1 мл. В качестве индифферентной жидкости выбран тетрабромэтан.

Таблица 1. Индицирование рентгенограммы соединения Na₂Cd(SeO₄)₂

1/1 ₀ , %	d, A	10 ⁴ / <i>d</i> ^е эксп	hkl	10 ⁴ /0 ² выч
50	6,631	227	040	227
45	5,780	299	001	300
55	5,270	360	021	357
55	4,356	527	041	527
45	3,843	677	121	671
71	3,514	810	061	812
100	3,462	834	160	826
52	3,430	850	141	842
57	3,221	964	151	970
71	3,127	1023	170	1011
36	2,881	1205	002	1201
81	2,832	1247	022	1257
45	2,772	1301	220	1314
29	2,661	1412	042	1428
38	2,400	1736	142	1742
43	2,318	1861	152	1870
29	2,275	1932	251	1913
29	2,218	2033	162	2026
50	2,180	2104	082	2110
29	2,148	2167	280	2167
21	2,070	2334	092	2352
38	1,920	2713	003	2701
24	1,910	2741	023	2758
31	1,881	2826	033	2829
24	1,780	3156	272	3154
60	1,764	3214	063	3213
17	1,730	3341	360	3341
38	1,664	3612	083	3611
26	1,606	3877	210	3879
21	1,443	4802	004	4802
17	1,420	4959	382	4939
17	1,410	5030	400	5030
19	1,320	5739	471	5726

I/I₀ – относительная интенсивность дифрактограмм;

hkl – индекс плоскости элементарной ячейки

Теплоемкость селената с погрешностью измерения $\pm 10 \%$ [4, 5] изучали в интервале 298,15...673 К на калориметре ИТ-С-400, работающем по методу периодического ввода тепла, табл. 2. Обозначения величин и условия эксперимента [6–8], а также калибровки работы калориметра соответствуют [9].

Таблица 2. Экспериментальные данные по удельной и мольной теплоемкостям Na₂Cd(SeO₄)₂

Т, К	<i>С_р±б</i> , Дж/(г∙К)	С _р ⁰±Å, Дж/ (моль∙К)	Т, К	<i>С_р±б</i> , Дж/(г∙К)	<i>С₀</i> °±Å, Дж/ (моль∙К)
298,15	0,3684±0,0130	164±16	498	0,6752±0,0076	300±9
323	0,5143±0,0081	229±10	523	0,6155±0,0077	273±10
348	0,6317±0,0069	281±9	548	0,6055±0,0077	291±4
373	0,7472±0,0084	332±10	573	0,5627±0,0078	307±4
398	0,8070±0,0102	359±13	598	0,5428±0,0077	330±4
423	0,8654±0,0033	385±4	623	0,5865±0,0099	345±4
448	0,7921±0,0085	352±10	648	0,6415±0,0089	355±4
473	0,7199±0,0076	320±9	673	0,6668±0,0041	363±5

Рис. 1. Зависимость теплоемкости Na₂Cd(SeO₄)₂ от температуры в интервале 298,15...673 К

При исследовании зависимости теплоемкости Na₂Cd(SeO₄)₂ от температуры при 423 К обнаружен резкий аномальный скачок, связанный, вероятно, с фазовым переходом II-го рода. По экспериментальным данным выведены уравнения температурной зависимости теплоемкости [Дж/(моль·К)]:

$$C_{p}^{0} = (603, 3\pm 22, 3) - (2, 3\pm 0, 1) \cdot 10^{-3} \text{T} + (389, 8\pm 14, 4) \cdot 10^{5} T^{-2}, (298, 15...423 \text{ K})$$

$$C_{p}^{0} = (854, 1\pm 24, 4) - (1110, 2\pm 31, 8) \cdot 10^{-3} T, (423...523 \text{ K})$$

$$C_{p}^{0} = (746, 3\pm 21, 3) - (274, 7\pm 7, 9) \cdot 10^{-3} T - (900, 4\pm 25, 8) \cdot 10^{5} T^{2}, (523...673 \text{ K})$$

На рис. 1 приведена зависимость $C_p^{0} \sim f(T)$.

На основе экспериментальных данных по температурной зависимости C_p^0 и расчетного значения $S^0(298,15)$ [10] в интервале 298,15...673 К рассчитаны термодинамические свойства селената (табл. 3).

Электрофизические исследования производились на образцах $Na_2Cd(SeO_4)_2$, приготовленных и обработанных в условиях, описанных в [9], на тех же установках.

Таблица 3. Термодинамические свойства Na₂Cd(SeO₄)₂ в интервале 298,15...673 К

Т, К	Ср⁰(<i>Т</i>), Дж/(моль∙К)	<i>S</i> ⁰(<i>T</i>), Дж/(моль∙К)	<i>Н</i> ⁰(<i>Т</i>)− <i>Н</i> ⁰ (298,15), Дж/моль	Ф [∞] (<i>Т</i>), Дж/(моль•К)
298,15	164±5	290±17	-	290±17
300	170±5	291±17	333±10	290±17
325	234±7	307±18	5404±155	290±17
350	284±8	326±19	11900±340	292±17
375	325±9	347±20	19538±559	295±17
400	359±10	369±22	28102±804	299±18
425	387±11	392±23	37429±1070	304±18
450	355±10	413±24	46642±1334	309±18
475	327±9	431±25	55160±1578	315±18
500	299±9	447±26	62985±1801	322±19
525	271±8	461±27	70115±2005	328±19
550	298±9	474±28	77286±2210	334±20
575	318±9	488±29	84963±2430	341±20
600	338±10	502±29	93061±2662	347±20
625	350±10	516±30	101509±2903	354±21
650	361±10	530±31	110248±3153	360±21
675	372±11	543±32	119225±3410	367±22

Ф - приведенный термодинамический потенциал

На рис. 2 представлены температурные зависимости диэлектрической проницаемости и электропроводности.

Рис. 2. Зависимость электрофизических свойств Na₂Cd(SeO₄)₂ от температуры в интервале 300...675 К: а) диэлектрическая проницаемость; б) электропроводность

В диапазоне температур от 300 до 400 К наблюдается монотонное возрастание диэлектрической проницаемости и электропроводности. При температуре 400...410 К наблюдается достаточно резкий скачок, при котором диэлектрическая проницаемость и электропроводность уменьшается до 500 К. В пределах 500...515 К происходит обратное изменение ε и *G*, т. е. их монотонный рост до температуры 675 К. Увеличение электропроводности в диапазоне 300...400 К свидетельствует о полупроводниковом свойстве исследуемого образца.

Достаточно большое значение диэлектрической проницаемости и рост ε с увеличением температуры свидетельствует о том, что данный образец, возможно, обладает сегнетоэлектрическими свойствами. Аномальный скачок ε и *G* при 400...410 K, повидимому, свидетельствует о фазовом переходе, скорее всего II-го рода.

Следует отметить, что обнаруженный фазовый переход II-го рода на кривой температурной зависимости теплоемкости селената хорошо согласуется с данными исследования электрофизических свойств соединения. Аномальные зависимости на кривых «lge $\varepsilon - T$ » и «lgG - T» свидетельствуют о полупроводниковых и сегнетоэлектрических свойствах данного соединения.

СПИСОК ЛИТЕРАТУРЫ

- Соединения редкоземельных элементов. Сульфаты, селенаты, теллураты, хроматы / Отв. ред. Л.М. Комиссарова. – М.: Наука, 1986. – 336 с.
- Ковба Л.М., Трунов В.К. Рентгенофазовый анализ. М.: Изд-во МГУ, 1976. – 256 с.
- Кивилис С.С. Техника измерений плотности жидкостей и твердых тел. – М.: Стандартгиз, 1959. – 191 с.
- Платунов Е.С., Буравой С.Е., Курепин В.В. Теплофизические измерения и приборы. – Л.: Машиностроение, 1986. – 256 с.
- Техническое описание и инструкция по эксплуатации ИТ-С-400. – Актюбинск: Актюбинский завод «Эталон», 1986. – 48 с.
- Спиридонов В.П., Лопаткин Л.В. Математическая обработка экспериментальных данных. – М.: Изд-во МГУ, 1970. – 221 с.
- Резницкий Л.А. Калориметрия твердого тела. М.: Изд-во МГУ, 1981. – 184 с.

Полученные результаты могут быть использованы для прогнозирования, синтеза и изучения новых соединений селена, обладающих важными электрофизическими свойствами.

Выводы

- Впервые жидкофазным способом из карбонатов натрия, кадмия и селеновой кислоты синтезирован селенат натрия-кадмия Na₂Cd(SeO₄)₂.
- 2. Методом рентгенофазового анализа определены тип сингонии, параметры элементарной ячейки соединения.
- Калориметрическим методом в интервале 298,15...673 К исследованы температурные зависимости теплоемкости соединения и выявлено, что на кривых зависимости теплоемкости от температуры при 423 К имеется λ-образный эффект, связанный, вероятно, с фазовым переходом II-го рода. Получены уравнения зависимости C_p⁰~f(T) и определены термодинамические функции.
- Исследованием электрофизических свойств (диэлектрическая проницаемость, электропроводность) в зависимости от температуры показано, что синтезированное соединение обладает полупроводниковыми и сегнетоэлектрическими свойствами.
- Robie R.A., Hewingway B.S., Fisher J.K. Thermodinamic Properties of Minerals and Ralated Substances at 298.15 and (10^s Paskals) Pressure and at Higher Temperatures. – Washington: United States Government Printing Office, 1978. – 456 p.
- Рустембеков К.Т., Дюсекеева А.Т., Шарипова З.М., Жумадилов Е.К. Рентгенографические, термодинамические и электрофизические свойства двойного теллурита натрия-цинка // Известия Томского политехнического университета. – 2009. – Т. 315. – № 3. – С. 16–19.
- Кумок В.П. Прямые и обратные задачи химической термодинамики. – Новосибирск: Наука, 1987. – С. 108–123.

Поступила 16.04.2009 г.