УДК 550.053.510.2+550.053.681.3(571.16)

О ТОЧНОСТИ ОПРЕДЕЛЕНИЯ ВРЕМЕННОГО ПОЛОЖЕНИЯ СЕЙСМИЧЕСКИХ СИГНАЛОВ ПО ОЦЕНКАМ ИХ ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК

В.П. Иванченков, А.И. Кочегуров, О.В. Орлов

Томский политехнический университет

E-mail: kai@cc.tpu.edu.ru

Рассматриваются результаты исследований точности определения временного положения сейсмических сигналов фазочастотными методами. Приводятся аналитические выражения для дисперсии оценок временного положения сигналов для случая коррелированных и некоррелированных значений фазочастотных характеристик участков сейсмической трассы. Отдельно анализируется ситуация, когда форма регистрируемых сигналов неизвестна.

Ключевые слова:

Временное положение сейсмических сигналов, фазочастотные методы, фазочастотная характеристика, функция групповой задержки.

Key words:

Time position of seismic signals, phase-frequency methods, phase-frequency characteristic, function of group delay.

В [1,2] предлагаются фазочастотные методы для определения временного положения сейсмических сигналов, основанные на анализе фазочастотных характеристик (ФЧХ) регистрируемых записей.

В данной работе исследуется точность оценок, получаемых фазочастотными методами, причем считается, что в общем случае значения ФЧХ являются коррелированными. Построение фазовых алгоритмов основано на теореме запаздывания, согласно которой $\phi_s(\omega, \tau) = \phi_{sv}(\omega) - \omega \tau$, где временное положение сигнала τ является параметром ФЧХ сигнала. Будем рассматривать лишь случай сильного сигнала, то есть величина отношения сигнал/помеха $\gamma(\omega) >> 1$ на частоте ω .

Для модели участка сейсмотрассы $x(t;\tau)=s(t-\tau)+n(t)$, являющейся аддитивной смесью сильного сигнала s(t) и гауссовой помехи n(t), оптимальная оценка временного положения по коррелированной выборке ФЧХ составляет [3]:

$$\hat{\tau}_{opt} = \frac{\int_{\Omega} V(\omega) [\phi_X(\omega) - \phi_S(\omega)] d\omega}{\int_{\Omega} V(\omega) d\omega};$$
(1)

$$V(\omega) = \int_{\Omega} R^{-1}(\omega, \omega') \omega' \, d\omega', \qquad (2)$$

где $R(\omega,\omega')$ — положительно определенная матрица, составленная из элементов межчастотной корреляционной функции ФЧХ смеси; Ω — анализируемая полоса частот; $\phi_x(\omega)$ и $\phi_s(\omega)$ — ФЧХ смеси и сигнала.

Нетрудно показать, что дисперсия оценки (1) имеет вид

$$D(\hat{\tau}_{opt}) = \left[\iint_{\Omega \Omega} R^{-1}(\omega, \omega') \omega \omega' \, d\omega \, d\omega' \right]^{-1}$$

В частном случае, когда значения ФЧХ статистически независимы, корреляционная матрица имеет диагональный вид

$$R(\omega, \omega') = \frac{1}{\gamma^2(\omega)} \delta(\omega - \omega'), \qquad (3)$$

где $\delta(\omega - \omega')$ – дельта-функция.

Подстановка (3) и (2) в (1) дает выражение для оптимальной оценки при некоррелированной выборке ФЧХ смеси

$$\hat{\tau}_{opt} = \frac{\int \gamma^2(\omega) [\phi_X(\omega) - \phi_S(\omega)] \, d\omega}{\int_{\Omega} \gamma^2(\omega) \omega^2 \, d\omega}, \qquad (4)$$

или в дискретном виде

$$\hat{\tau}_{opt} = \frac{\sum_{k=1}^{m} \gamma^2(\omega_k) \omega_k \Delta \phi(\omega_k)}{\sum_{k=1}^{m} \gamma^2(\omega_k) {\omega_k}^2},$$
(5)

где $\Delta \phi(\omega_k) = \phi_s(\omega_k) - \phi_s(\omega_k); m = \Omega/\Delta \omega; \Delta \omega - шаг дискретизации по частоте.$

Дисперсия оценки (5) составляет

$$D(\hat{\tau}_{opt}) = \left[\sum_{k=1}^{m} \gamma^2(\omega_k) \omega_k^2\right]^{-1}.$$

Сравнение (1) и (4) показывает, что для случая сильного сигнала наличие корреляции значений ФЧХ в выборке смеси приводит лишь к изменению весовых коэффициентов при оптимальной обработке.

Для случая слабого сигнала найти оптимальную оценку временного положения сигнала удается только при некоррелированных значениях ФЧХ. Такая оценка получена в [1] и определяется путем максимизации функции правдоподобия вида

$$\ln \Gamma(\tau) = \sum_{k=1}^{m} \gamma(\omega_k) \cos(\Delta \phi(\omega_k) + \omega_k \tau).$$
 (6)

Если в выражении (6) принять все $\gamma(\omega_k) >> 1$ (сильный сигнал), то можно считать, что

$$\cos(\Delta\phi(\omega_k) + \omega_k\tau) \approx 1 - \frac{1}{2} (\Delta\phi(\omega_k) + \omega_k\tau)^2.$$
 (7)

Подставляя (7) в (6) и решая уравнение правдоподобия

$$\left.\frac{\partial}{\partial \tau} \ln \Gamma(\tau)\right|_{\tau = \hat{\tau}_{opt}} = 0$$

нетрудно получить выражение (5), определяющее оптимальную оценку при сильном сигнале.

Таким образом, при отсутствии корреляции между значениями в выборке ФЧХ, оптимальная процедура оценки временного положения слабого сигнала, является оптимальной и для сильного сигнала. Тогда дисперсию оценки для слабого сигнала можно приблизительно записать

$$D(\hat{\tau}_{opt}) \approx \frac{4}{\pi} \left[\sum_{k=1}^{m} \gamma^2(\omega_k) \omega_k^2 \right]^{-1}$$

или, переходя к общепринятым обозначениям,

$$D(\hat{\tau}_{opt}) \approx \frac{4}{\pi q_{\Sigma}^2 \sigma_{\omega}^2},$$
 (8)

где $q_{\Sigma}^2 = \sum_{k=1}^m \gamma^2(\omega_k)$ – суммарное отношение сигнал/помеха; σ_{ω} – среднеквадратическая ширина

спектра сигнала. Как отмечалось в [1], получить оптимальную оценку временного положения слабого сигнала при коррелированных значениях ФЧХ не удается. Однако, сопоставляя выражения (1), (4), (5) и (6), можно предположить, что наличие корреляции значений ФЧХ, как и в случае сильного сигнала, не изменит существенно саму процедуру оценки и при слабом сигнале, а лишь приведет к изменению весовых коэффициентов. Тогда процедуру оценки временного положения сигнала, реализуемую путем максимизации выражения (6), можно считать универсальной для слабого и сильного сигналов, причем оптимальность оценок обеспечивается

На практике получить оптимальные оценки временного положения с помощью фазочастотных алгоритмов не удается, так как распределение отношения сигнал/помеха в анализируемой полосе частот Ω , формирующее весовые коэффициенты в (9), как правило неизвестно. Поэтому можно говорить только о некоторых квазиоптимальных оценках, определенных, например, с помощью фазочастотных алгоритмов с равновесной обработкой. Функция правдоподобия для таких алгоритмов имеет вид [3]:

надлежащим выбором весовых коэффициентов.

$$\ln \Gamma(\tau) = \sum_{k=1}^{m} \cos(\Delta \phi(\omega_k) + \omega_k \tau).$$
(9)

Найдем дисперсию оценки временного положения слабого сигнала для равновесного алгоритма (9). При переходе к равновесной обработке максимальные потери в суммарном отношении сигнал/помеха могут быть охарактеризованы параметром η [4]

$$\eta_{\max} = \left(\frac{q_{\Sigma}}{q_{\Sigma}'}\right)^2 = \sum_{k=1}^m (\sqrt{k} - \sqrt{k-1})^2, \qquad (10)$$

где $(q_{\Sigma})^2$ – суммарное отношение сигнал/помеха, накапливаемое при равновесном фазочастотном алгоритме (9).

Сопоставляя (10) и (8), нетрудно получить выражение для дисперсии оценки временного положения слабого сигнала, определяемой фазочастотным алгоритмом с равновесной обработкой

$$D(\hat{\tau}) \approx \frac{4\sum_{k=1}^{m} (\sqrt{k} - \sqrt{k-1})^2}{\pi q_{\Sigma}^2 \sigma_{\omega}^2}.$$
 (11)

Как и следовало ожидать, переход к равновесной обработке снижает точность получаемых оценок. Однако, при практически используемом числе частотных компонент *m*, это снижение не является очень значительным. Так, при *m*=1, максимальные потери составляют η_{max} =1,58; а при *m*=20 соответственно η_{max} =1,754. В тоже время, ценность фазочастотных алгоритмов с равновесной обработкой (9) заключается в том, что в данном случае можно находить оценки временного положения сигналов с высокой точностью без знания формы сигналов.

Следует отметить, что на точность оценок, получаемых фазочастотными методами, также существенное влияние оказывает надежность расчета Φ ЧХ участков сейсмотрассы. Это связано с тем, что Φ ЧХ в общем случае является многозначной функцией

$$\phi_{ucm}(\omega_k) = \phi_n(\omega_k) + 2\pi l_k, \qquad (12)$$

где $\phi_{ucm}(\omega_k)$ и $\phi_p(\omega_k)$ – истинное и расчетное значение ФЧХ; l_k – целое число.

Для устранения неоднозначности Φ ЧХ (определения *l* для каждого *k* в (12)) в настоящее время известен ряд процедур развертывания фазы, которые можно объединить в три подхода.

1. Метод Шафера

Основная идея данного метода заключается в сравнении главных значений ФЧХ на двух соседних частотах (ω_k, ω_{k-1}) и, в зависимости от результата сравнения, смещение отдельных значений ФЧХ на величину, кратную 2π . Примером конкретной реализации метода Шафера может служить алгоритм развертывания фазы, предложенный в [5]:

$$\phi_{ucm}(\omega_k) = \phi_{ucm}(\omega_{k-1}) + [\phi_p(\omega_k) - \phi_p(\omega_{k-1})] + A,$$

$$A = \begin{cases} 0, & \left| \phi_{p}(\omega_{k}) - \phi_{p}(\omega_{k-1}) \right| < \pi \\ 2\pi, & \left(\phi_{p}(\omega_{k}) - \phi_{p}(\omega_{k-1}) \right) \le -\pi; \\ -2\pi, & \left(\phi_{p}(\omega_{k}) - \phi_{p}(\omega_{k-1}) \right) \ge \pi \end{cases}$$
$$\phi_{ucm}(\omega_{1}) = \phi_{p}(\omega_{1}); \\ k = \overline{2, m}. \end{cases}$$

50

Рис. 1. Развертывание фазочастотной характеристики методом Шафера: а) амплитудно-фазочастотная характеристика (АФЧХ); б) развернутая ФЧХ (истинная); в) расчетная ФЧХ

На рис. 1 приведена иллюстрация развертывания фазы по Шаферу. Видно, что в данном случае удалось получить истинный фазовый спектр. Основным недостатком данного метода является то, что в процессе его реализации невозможно отделить скачки фазы, обусловленные природой процесса, например распространением сигнала через контрастные слои, от скачков, связанных с расчетом ФЧХ в области главных значений функции arctg. И в том и в другом случае ФЧХ будет развернута одинаковым образом, если эти скачки превышают величину π .

2. Метод численного интегрирования групповой задержки

В этом подходе избавиться от многозначности ФЧХ позволяет переход в область производных

$$\phi_{ucm}(\omega_k) = \phi_{ucm}(\omega_{k-1}) + \Delta \phi(\omega_k),$$

где приращение

$$\Delta\phi(\omega_k) = f(\phi'_p(\omega_k), \ \phi'_p(\omega_{k-1}), \ \Delta\omega = \omega_k - \omega_{k-1})$$

может быть вычислено одним из методов численного интегрирования, например, методом трапеций; k=2,m; $\phi_{ucm}(\omega_1)$ – заданное начальное условие.

При этом

$$\phi_{p}'(\omega_{k}) = t_{zp}(\omega_{k}) = \frac{B'(\omega_{k})A(\omega_{k}) - A'(\omega_{k})B(\omega_{k})}{A^{2}(\omega_{k}) + B^{2}(\omega_{k})},$$

где $A(\omega_k)$ и $B(\omega_k)$ – соответственно реальная и мнимая части <u>д</u>искретного преобразования Фурье (ДПФ); $k=\overline{2,m}$; $t_{zp}(\omega_k)=\phi_p'(\omega_k)$ – групповая задержка на частоте ω_k , определяющая задержку максимума огибающей на этой частоте.

Данный метод позволяет полностью развернуть ФЧХ сигнала, однако погрешность метода существенно зависит от величины шага интегрирования $\Delta \omega$. К сожалению, невозможно заранее определить, какой должна быть величина *m* для ДПФ, чтобы точно развернуть фазу. Особенно большие погрешности могут накапливаться при восстановлении ФЧХ, если на какой-либо частоте ω_k наблюдалось высокое значение производной. На рис. 2 приведены истинная ФЧХ и ФЧХ, развернутая по методу численного интегрирования групповой задержки для АФЧХ, представленной на рис. 1, *a*. Из рис. 2 видно, как с ростом частоты накапливается погрешность.

Дополнительным преимуществом метода численного интегрирования групповой задержки является то, что переход в область производных позволяет реализовать эффективные алгоритмы определения временного положения сигнала непосредственно на основе анализа статистик групповой задержки. Оптимальная оценка в этом случае находится из функции правдоподобия вида [6]:

$$\ln L(\tau) = \sum_{k=1}^{m} \beta(\omega_k) \cos(\omega_k \Delta t_{ep}(\omega_k) + \omega_k \tau), \quad (13)$$

где $\beta(\omega_k) = \frac{\gamma(\omega_k)}{\mu_k}$ — отношение сигнал/помеха в

области производных [7];
$$\mu_k = \frac{\omega_k^n}{\omega_k^s}$$
 – отношение

частоты экстремумов помехи к частоте экстремумов сигнала; $\Delta t_{zp}(\omega_k) = \Delta t_{zp}^{x}(\omega_k) - \Delta t_{zp}^{s}(\omega_k)$ – отклонение групповой задержки смеси от групповой задержки сигнала на частоте ω_k .

Рис. 2. Развертывание фазочастотной характеристики мето-

дом: а) Шафера; б) численного интегрирования групповой задержки

Дисперсия оценки по аналогии с (8) для слабого сигнала составляет

$$D(\hat{\tau}_{onm}) \approx \frac{4}{\pi \beta_{\Sigma}^2 \sigma_{\omega}^2},$$
 (14)

где $\beta_{\Sigma}^2 = \sum_{k=1}^m \beta^2(\omega_k)$ – суммарное отношение сиг-

нал/помеха в области производных.

Переход к равновесному суммированию в (13) ($\beta(\omega_k)=1$ для $k=\overline{1,m}$), как и в случае анализа значений ФЧХ (14), увеличивает дисперсию оценки [5]:

$$D(\hat{\tau}) \approx \frac{4\sum_{k=1}^{m} (\sqrt{k} - \sqrt{k-1})^2}{\pi \beta_{\Sigma}^2 \sigma_{\omega}^2}.$$
 (15)

Сопоставляя (8) и (14), (11) и (15), нетрудно увидеть, что алгоритмы определения временного

положения сигналов, основанные на анализе групповых задержек, обеспечивают более низкую точность, чем ранее рассмотренные фазочастотные алгоритмы. Однако эти алгоритмы используют априорную информацию только о форме ФЧХ и не требуют развертывания ФЧХ во всей анализируемой полосе частот.

3. Объединенный метод с адаптацией величины шага интегрирования

В [8] предложен алгоритм развертывания фазы, в котором построена числовая схема, объединяющая информацию из групповой задержки и главных значений ФЧХ. Так, для определения величины *l* для каждого *k* в формуле (12), авторы предлагают использовать следующее соотношение:

$$\phi(\omega_k) - \phi_p(\omega_k) + 2\pi l_k | < nopor < \pi, \tag{16}$$

где $\phi(\omega_k)$ – значение ФЧХ на частоте ω_k , восстановленное по методу численного интегрирования групповой задержки; $k=\overline{1,m}$.

Целое значение l_k , при котором неравенство (16) выполняется, принимается за истинное. Если ни при каком значении l_k для частоты ω_k неравенство не выполняется, шаг $\Delta \omega = \omega_k - \omega_{k-1}$ уменьшается до тех пор, пока не будет найдена согласованная оценка l_k . Адаптация шага интегрирования по частоте, соответствующая области резкого изменения ФЧХ, позволяет восстановить истинную фазу в ситуациях, когда возможно неоднозначная интерпретация поведения ФЧХ. Например, неясно направление движения АФЧХ. Кроме того, объединенный метод не зависит от погрешности интегрирования, так как $\phi(\omega_k)$ в формуле (16) используется только для нахождения величины l_k , а истинная фаза определяется как $\phi_{ucm}(\omega_k) = \phi_p(\omega_k) + 2\pi l_k$.

В качестве примера на рис. 3, *a*, приведена АФЧХ сложного сигнала, а на рис. 3, *б*, ФЧХ, развернутая по объединенному методу. Из рисунков видно, что с помощью данного метода удалось точно восстановить истинную ФЧХ сигнала, которую затруднительно построить другими методами.

В объединенном методе особое внимание следует обратить на процедуру уменьшения шага по частоте

Рис. 3. Развертывание фазочастотной характеристики комбинированным методом: а) амплитудно-фазочастотная характеристика; б) фазочастотная характеристика

 $\Delta \omega$. При ДПФ для уменьшения шага по частоте необходимо увеличивать длительность сигнала. В такой ситуации анализируемый участок сейсмотрассы может быть дополнен нулями. Однако значения ФЧХ в этом случае будут коррелированными. Коррелированность значений ФЧХ, как показано выше, приведет к изменению весовых коэффициентов в алгоритмах обработки, которые на практике найти сложно. Однако, учитывая, что сама процедура обработки не меняется, переход к алгоритмам с равновесной обработкой позволяет избежать возникших трудностей и получить оценки временного положения сигналов с достаточно высокой точностью.

СПИСОК ЛИТЕРАТУРЫ

- Иванченков В.П., Кочегуров А.И. Определение временного положения сейсмических сигналов по оценкам их фазочастотных характеристик // Геология и геофизика. – 1988. – № 9. – С. 77–83.
- Иванченков В.П., Вылегжанин О.Н., Орлов О.В., Кочегуров А.И. Методы фазочастотного анализа волновых полей и их применение в задачах обработки данных сейсморазведки // Известия Томского политехнического университета. 2006. Т. 309. № 7. С. 65–70.
- Иванченков В.П., Кочегуров А.И. Фазочастотные алгоритмы оценки местоположения пространственно- временных сигналов в условиях априорной неопределенности // Известия высших учебных заведений. Физика. – 1995. – Т. 38. – № 9. – С. 100–104.
- Поиск, обнаружение и измерение параметров сигналов в радионавигационных системах / Под ред. Ю.М. Казаринова. – М.: Советское радио, 1975. – 296 с.

Проведенный анализ способов развертывания ФЧХ показал, что каждый из них наряду с несомненными достоинствами, имеет и недостатки. В целом, предпочтение следует отдать методу Шафера, т. к. он прост в реализации, а возникающие погрешности при развертывании ФЧХ в анализируемой полосе частот можно контролировать путем анализа исходной записи.

Таким образом, фазочастотные методы обеспечивают достаточно высокую точность оценок временного положения сигналов даже при наличии корреляции в выборке ФЧХ сейсмической записи.

- Долгополов Д.В., Пасторов А.И. О разделении двух наложившихся импульсов // Применение ЭВМ в сейсмологической практике. Методические работы ЕССН. – М.: Наука, 1985. – С. 86–91.
- Кочегуров А.И., Быстров В.Н. Определение временного положения сложных сигналов в среде с дисперсией и поглощением // Известия высших учебных заведений. Радиоэлектроника. – 2002. – Т. 45. – № 3-4. – С. 50–54.
- Гольдин С.В. Смещение нулей и экстремумов сейсмических сигналов под воздействием помех // Геология и геофизика. – 1964. – № 10. – С. 130–144.
- Tribolet J.M. A new phase unwrapping algorithm // IEEE Transaction on acoustics, speech and signal processing. – 1977. – V. 25 (2). – P. 170–177.

Поступила 13.11.2009 г.

УДК 550.8.053:519.2

КОРРЕКЦИЯ СКОРОСТНОГО ЗАКОНА ПО ДАННЫМ НЕПРОДОЛЬНОГО ВЕРТИКАЛЬНОГО СЕЙСМИЧЕСКОГО ПРОФИЛИРОВАНИЯ

Д.Ю. Степанов, М.С. Речкин

Томский политехнический университет E-mail: w00x@sibmail.com

Предложен алгоритм коррекции скоростного закона по данным непродольного вертикального сейсмического профилирования. Рассмотрены модели ошибок в определении статических поправок, показано, что данный алгоритм позволяет минимизировать влияние погрешности определения статических поправок и тем самым повысить точность оценки интервальных скоростей.

Ключевые слова:

Вертикальное сейсмическое профилирование, интервальные скорости, статическая поправка.

Key words:

Vertical seismic profiling, interval velocities, static correction.

При проведении сейсморазведочных работ методом вертикального сейсмического профилирования (ВСП) скорости продольных волн оценивают по времени первого вступления на наблюденном волновом поле с ближнего пункта возбуждения (ПВ) [1, 2]. Так как анализ проводится по однократному наблюдению, полученному с помощью перестановки приемников и многократного возбуждения, и наблюденное поле осложнено помехами, оценка интервальных скоростей обычно обладает значительными погрешностями. Последующие процедуры обработки полей ВСП (приведение