Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт: ЭНИН

Направление подготовки: 13.04.02 – «Электроэнергетика и электротехника»

Кафедра: Электроснабжения промышленных предприятий

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Тема работы

Применение свинцово-кислотных накопителей электрической энергии в автономных комплексах электроснабжения на базе дизель-генераторов и фотоэлектрических станций

УДК 621.31.031:621.355.2:621.313.322-843.6:621.311.29-049.7

Студент

Группа	ФИО	Подпись	Дата
5AM4K	Кулеш Илья Юрьевич		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ЭПП	Сурков М.А.	к.т.н., доцент		

консультанты:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ст. преподаватель кафедры менеджмента	Грахова Е.А.			

По разделу «Социальная ответственность»

1 , , ,				
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ЭБЖ	Бородин Ю.В.	к.т.н., доцент		

ЛОПУСТИТЬ К ЗАШИТЕ:

	r 1	- 1		
Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
	Завьялов В. М.	д.т.н., профессор		

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт ЭНИН

Направление подготовки (специальность) 13.04.02 – «Электроэнергетика и электротехника» Кафедра ЭПП

УТВЕРЖДАЮ:	
Зав. кафедрой	
	Завьялов В. М.
(Подпись) (Дата)	(Ф.И.О.)

ЗАЛАНИЕ

эадание					
на выпол	на выполнение выпускной квалификационной работы				
В форме:					
	Магистерской диссертации				
(бакалаврскої	й работы, дипломного проекта/работы, магистерской диссертации)				
Студенту:					
Группа	ФИО				
5AM4K	Кулеш Илье Юрьевичу				
Тема работы:					
Применение свинцово-кис	слотных накопителей электрической энергии в автономных ком-				
плексах электроснабжени	я на базе дизель-генераторов и фотоэлектрических станций				

Утверждена приказом директора (дата, номер)

Срок сдачи студентом выполненной работы:	
--	--

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе	Расчет электрических нагрузок;		
	Солнечная инсоляция местности;		
	Задание на проектирование (заказчика).		
Перечень подлежащих исследова-	дова- 1. Оценка потенциала СЭС, определение наибо-		
нию, проектированию и разработке	лее перспективного энергоресурса.		
вопросов	2. Разработка структурной схемы СЭС.		
Donpoeds	3. Разработка структурной схемы ДЭС.		
	4. Разработка структурной схемы СДЭС и алго-		
	ритма её функционирования.		
	5. Выбор оборудования СДЭС.		
	6. Расчет энергетического баланса гибридной		
	СДЭС электростанции.		
	7. Сравнение тарифов СЭС, ДЭС, СДЭС		
	8. Моделирование APM в SCADA системе		
	TRACE MODE.		
	9. Планирование расчета и проектирования.		
	10. Выполнение анализа охраны труда при эксплу-		
	атации объекта.		

Перечень графического мат	снабжения 2. Структурная схема электроснабжения с указанием систем управления. 3. Расположение солнечных панелей на карте.
Консультанты по разделам	выпускной квалификационной работы
Раздел	Консультант
Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	Ассистент кафедры менеджмента Грахова Е.А.
Социальная ответственность	Кандидат технических наук, доцент кафедры ЭБЖ Бородин Ю.В.
Иностранный язык	Кандидат педагогических наук, доцент кафедры ИЯЭИ Матухин Д.Л.
	е должны быть написаны на русском и иностранном язы- лектроснабжения в SCADA системе TRACE MODE

Дата выдачи задания на выполнение выпускной квалифика-	
ционной работы по линейному графику	

Задание выдал руководитель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ЭПП	Сурков М. А.	к.т.н., доцент		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5AM4K	Кулеш Илья Юрьевич		

РЕФЕРАТ

Выпускная квалификационная работа 90 страниц, 24 рисунка, 54 таблицы, 23 источника, 2 приложения.

Ключевые слова: автономное электроснабжение, солнечно-дизельная электростанция, электростанция, солнечный модуль, солнечная радиация, накопитель электрической энергии.

Объектом исследования является: Потребитель 2 категории

Цель работы: Исследование особенностей применения свинцово-кислотных накопителей электроэнергии в автономных комплексах электроснабжения на базе дизель-генераторов и фотоэлектрических станций.

В процессе исследования проводились Построение графика нагрузки автономного потребителя, оценка потенциала солнечной электростанции и расчет оптимального количества солнечных панелей, рассмотрение варианта энергетического комплекса с использование солнечных панелей без накопителей, расчет энергетического комплекса с использованием солнечных панелей с накопителями и выбор оборудования, расчет тарифа солнечной электростанции, расчет дизельной электростанции и выбор оборудования, расчет тарифа дизельной электростанции, расчет солнце-дизельной электростанции, исследование динамики заряда-разряда накопителей электрической энергии, разработка схемы солнце-дизельной электростанции, выбор оборудования солнце-дизельной электростанции, определение расположения солнечных панелей.

В результате исследования построены графики выработки и потребления электрической энергии, графики солнечных кривых, графики заряда-разряда накопителей электрической энергии, выбраны тип и емкость аккумуляторных батарей, разработана схема солнце-дизельной электростанции и выбрано основное оборудование в соответствии со схемой, произведено сравнение тарифов солнечной электростанции, дизельной электростанции и солнце-дизельной электростанции.

Основные конструктивные, технологические и технико-эксплуатационные характеристики: Разработанная схема солнце-дизельной электростанции способна обеспечить бесперебойное электроснабжение потребителя.

Область применения: Децентрализованные районы

Экономическая эффективность/значимость работы: Замещение доли дизель-генераторов в выработке электрической энергии, обеспечение экологически чистой электроэнергией.

В будущем планируется: Усовершенствование прогнозирования запуска дизельного генератора и развитие возобновляемой энергетики в регионе и в стране в целом.

Используемые сокращения:

АБ – аккумуляторные батареи;

ДЭС – дизельная электростанция;

СЭС – солнечная электростанция;

СДЭС – солнце-дизельная электростанция;

СИ – сетевой инвертор;

Н – нагрузка;

СП – солнечные панели;

K – контроллер;

АКБ – аккумуляторные батареи;

И – инвертор;

BMS – Система управления батареями;

MPPT – Maximum Power Point Tracking – отслеживание точки максимальной мощности;

ДТ – датчик тока;

КПД – коэффициент полезного действия;

ШИМ- широтно-импульсная модуляция;

ПО – программное обеспечение;

DOD – глубина разряда.

Содержание

Введение	. 10
1. Технический расчет и выбор оборудования для солнечной электростанции	.11
1.1. Построение графика электропотребления по месяцам года	. 11
1.2. Оценка потенциала СЭС и расчет оптимального количества солнечных	, L
панелей	. 12
1.2.1. Оценка потенциала СЭС в районе села Молчаново	. 12
1.2.2. Расчет оптимального количества солнечных панелей (вариант исполнения энергетического комплекса с использованием солнечных панелей без накопителей)	. 15
1.3. Расчет энергетического комплекса с использованием солнечных	
панелей с накопителями электрической энергии и выбор оборудования	. 17
1.3.2. Расчет необходимого количества аккумуляторов	20
1.3.3. Выбор контроллера	21
1.3.4. Выбор инвертора	24
1.3.5. Используемое программное обеспечение	28
1.3.6. Расчет стоимости тарифа СЭС	31
1.4. Расчет энергетического комплекса с использованием дизельной	
электростанции	. 35
1.4.1. Расчет и выбор ДЭС	
1.4.2. Расчет стоимости тарифа	37
1.5. Расчет солнечно-дизельной электростанции (СДЭС)	. 40
1.5.1. Определение оптимально диапазона времени работы СЭС	.41
1.5.2. Выбор оборудования	41
1.5.3. Разработка схемы функционирования СДЭС	44
1.5.4. Расчет расхода топлива ДЭС	51
1.5.5. Размещение солнечных панелей	. 54
1.5.6. Расчет стоимости тарифа СДЭС	55
1.6. Разработка компьютерной модели автономного комплекса электроснабжения в SCADA-системе Trace mode	. 59
2. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	
2.1. Предпроектный анализ	
2.1.1. Технико-экономическое обоснование проекта	
2.1.2. SWOT- анализ проекта	
=: I =: N !! O I WIIIWIIIO II POVILIWIII II I	. 00

2.2. Планирование работ по научно-техническому проекту	. 66
2.3. Смета затрат на научно-техническое проектирование	. 68
2.3.1. Амортизация оборудования для НТП	. 68
2.3.2. Расчёт оплаты труда работников	.69
2.3.3. Дополнительная заработная плата исполнителей темы	.71
2.3.4. Отчисления во внебюджетные фонды (страховые отчисления)	. 71
2.3.5. Накладные расходы	72
2.3.6. Формирование сметы научно-технического проекта	.72
2.4. Определение целесообразности и эффективности научно-технического проекта	
2.4.1. Определение ресурсоэффективности проекта	
2.4.2. Анализ и оценка научно-технического уровня проекта	
Выводы по разделу	
3. Социальная ответственность	. 80
Введение	
3.1. Анализ выявленных вредных факторов проектируемой производствен-	
ной среды	. 80
3.1.1. Микроклимат	. 80
3.1.2. Защита от шума	. 81
3.1.3. Защита от электромагнитных излучений	.83
3.1.4. Освещение	.84
3.2. Анализ опасных производственных факторов	. 88
3.2.1. Анализ опасности поражения электрическим током	.88
3.2.2. Пожарная безопасность	. 90
3.3. Экологическая безопасность	. 93
3.4. Защита в чрезвычайных ситуациях	. 94
3.5. Правовые и организационные вопросы обеспечения безопасности	. 95
Вывод по разделу	. 96
Заключение	. 97
Список используемой литературы	. 98
Приложение А	
Приложение Б	

Введение

В настоящее время энергия необходима для существования и развития человечества. Она воздействует на природу и окружающую среду. Электроэнергия настолько твердо вошла в быт и производственную деятельность человека что он даже и не мыслит своего существования без. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения ряда вопросов, среди которых перераспределение средств на покрытие нужд человечества, поиск и разработка новых альтернативных технологий выработки электроэнергии и т.д.

В данной работе было уделено внимание солнечной энергетике. В настоящее время данная отрасль динамично развивается с технологических и экономических позиций и внедряется по всему миру. Достоинства такого вида энергии очевидны: солнечный свет как энергоноситель доступен в любой точке земного шара, технологии его преобразования в электрическую энергию были изучены еще в конце прошлого века и все время модернизируются и удешевляются, а также срок службы и простота эксплуатации позволяют использовать солнечные установки даже в локальных масштабах.

В России солнечной энергетики практически нет — все мощности составляют около 1 МВт. Паритет между солнечной и традиционной энергией тоже возможен, если мощности первой будут превышать несколько сотен мегаватт. А это сложно представить — солнечных дней в России меньше, чем в Европе. Также к развитию новых технологий иногда подталкивает отсутствие энергоресурсов, которые в будущем будут конкурентоспособнее, чем нефть и газ. В России данное обстоятельство отсутствует, поскольку есть ископаемые энергоресурсы. [2]

Ключевым фактором в данной работе является проблема автономного электроснабжения потребителя 2 категории, расположенного в селе Молчаново, решение которой будет производиться с использованием солнечной энергетики. В роли объекта электроснабжения выступает поликлиника села Молчаново Томской области.

2. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение

В настоящее время перспективность научно-технического проекта определяется не столько масштабом открытия, оценить которое на первых этапах жизненного цикла высокотехнологического и ресурсоэффективного продукта бывает достаточно трудно, сколько коммерческой ценностью разработки. Оценка коммерческой ценности разработки является необходимым условием при поиске источников финансирования для проведения проектирования и коммерциализации его результатов.

Темой научно-технического проекта является «Применение свинцовокислотных накопителей электрической энергии в автономных комплексах электроснабжения на базе дизель-генераторов и фотоэлектрических станций». Результат проектирования предполагает использование автоматизированных автономных комплексов в объектах, централизованное электроснабжение которых невозможно или экономически нецелесообразно.

Целью данного раздела является определение перспективности и успешности научно-технического проекта, оценка его эффективности и уровня возможных рисков. Для достижения данной цели необходимо решить следующие задачи:

- Оценить конкурентоспособность инженерного решения;
- Осуществить планирование этапов выполнения НТП;
- Рассчитать бюджет НТП;
- Произвести оценку экономической эффективности НТП.

2.1. Предпроектный анализ

2.1.1. Технико-экономическое обоснование проекта

Существуют в России населенные пункты, централизованное электроснабжение которых отсутствует или экономически нецелесообразно. Такие поселки обычно питаются от дизельных электростанций, которые требуют больших капиталовложений из-за необходимости постоянного транспорта топлива.

Вышеперечисленные обстоятельства приводят к необходимости поиска иных источников электроэнергии с минимальным сервисным обслуживанием и более низкими материальными затратами.

В рамках настоящего научно-технического проекта предлагается разработать автономный комплекс электроснабжения с применением свинцово-кислотных аккумуляторов на базе дизельной и солнечной электростанций. Данная схема позволит существенно снизить себестоимость электроэнергии в основном за счет снижения расхода топлива дизель-генераторов.

Основными потребителями данного проекта могут быть населенные пункты и объекты предприятий, находящиеся в децентрализованных районах.

2.1.2. SWOT- анализ проекта

SWOT-анализ — метод стратегического планирования, используемый для оценки факторов и явлений, влияющих на проект или предприятие. Все факторы делятся на четыре категории: strengths (сильные стороны), weaknesses (слабые стороны), opportunities (возможности) и threats (угрозы). Метод включает определение цели проекта и выявление внутренних и внешних факторов, способствующих её достижению или осложняющих его.

Сильные стороны — факторы, характеризующие конкурентоспособную сторону научно-исследовательского проекта. Сильные стороны свидетельствуют о том, что у проекта есть отличительное преимущество или особые ресурсы, являющиеся особенными с точки зрения конкуренции.

Слабые стороны — недостатки, упущения или ограниченности научно-исследовательского проекта, которые препятствуют достижению его целей. Это то, что плохо получается в рамках проекта или где он располагает недостаточными возможностями или ресурсами по сравнению с конкурентами.

Возможности включают в себя любую предпочтительную ситуацию в настоящем или будущем, возникающую в условиях окружающей среды проекта.

Угроза представляет собой любую нежелательную ситуацию, тенденцию или изменение в условиях окружающей среды проекта, которые имеют разрушительный или угрожающий характер для его конкурентоспособности в настоящем или будущем.

Таблица 2.1.1 – Матрица SWOT

	Сильные стороны:	Слабые стороны:
	 С1. Энергоэффективность и экологичность технологичность технологии; С2. Востребованность для объектов без централизованного электроснабжения; С3. Отсутствие конкурентов (нет аналогов в РФ); С4. Обширная сфера применения. 	Сл1. Высокая рыночная сто- имость оборудования; Сл2. Пассивность целевой группы; Сл3. Информация о разра- ботках может быть ис- пользована конкурен- тами.
Возможности: В1. Расширение круга клиентов, географической зоны; В2. Большой потенциал применения SCADA систем в технологическом процессе; В3. Появление дополниельного спроса на новый продукт за счет экономии на топливе.	Благодаря актуальности и обширной сфере применения, высокий спрос и возможность создания партнерских отношений с рядом исследовательских институтов предприятий; Большой потенциал применения SCADA систем в технологическом процессе, за счет наличия современного программного продукта.	
Угрозы: У1. Низкий уровень входа на рынок. У2. Появление конкурентов. У3. Ухудшение экономической ситуации и уменьшение целевой аудитории.	В условиях актуальности и обширной сферы применения данного продукта появление конкурентов снижает эффективность проекта.	Низкая информированность потенциальных потребителей приводит к затруднению входа на рынок

Таблица 2.1.2 – Интерактивная матрица проекта

Сильные стороны						
		C1	C2	C3	C4	
Возможности	B1	+	+	+	+	
проекта	B2	_	_	_	_	
	В3	+	+	-	+	

При анализе данной интерактивной таблицы можно выявить следующие коррелирующие сильных сторон и возможности: B1C1C2C3C4, B3C1C2C4.

Таблица 2.1.3 – Интерактивная матрица проекта

Слабые стороны						
		Сл1	Сл2	Сл3		
Возможности	B1	_	_	_		
проекта	B2	_	_	_		
	В3	_	_	_		

Коррелирующие слабые стороны и возможности не выявлены.

Таблица 2.1.4 – Интерактивная матрица проекта

Сильные стороны						
		C1	C2	С3	C4	
Угрозы	У1	_	_	_	_	
проекта	У2	_	+	_	+	
	У3	0	_		_	

При анализе данной интерактивной таблицы можно выявить следующие коррелирующие сильных сторон и угроз: У2С2С4.

Таблица 2.1.5 – Интерактивная матрица проекта

		Сл1	Сл2	Сл3
Угрозы проекта	У1	+	+	_
проекта	У2	_	_	+
	У3	+	_	_

При анализе данной интерактивной таблицы можно выявить следующие коррелирующие слабых сторон и угроз: У1Сл1Сл2, У2Сл3 и У3Сл1.

Таким образом, данное научно-технический проект имеет высокий потенциал и широкий круг потребителей.

2.2. Планирование работ по научно-техническому проекту

Планирование проекта — это составление календарных планов выполнения комплексов работ, определение денежных средств, необходимых для их реализации, а также трудовых и материальных ресурсов.

Основные задачи планирования:

- 1. Взаимная увязка работ проекта;
- Согласование выполнения отдельных этапов работ во времени, определение их длительности и обеспечение их выполнения в установленные сроки;
- 3. Определение общего объема работ и потребных для его выполнения денежных, материальных и трудовых ресурсов;
- 4. Распределение общего объема работ между исполнителями.

При графическом методе планирования на основе расчета трудоемкости и календарной продолжительности выполнения всех включенных в план работ с учетом их взаимосвязи и последовательности выполнения во временном масштабе (соответствующим производственному календарю планируемого года) строится графическая модель комплекса работ в виде линейной диаграммы, в которой положение и длина каждой линии характеризует дату начала (окончания) и продолжительность выполнения каждой работы. На основе линейного графика определяется общая продолжительность всего комплекса работ [1].

Определение трудоемкости и продолжительности работ осуществляется на основе отраслевых нормативов, типовых норм на разработку конструкторской документации, а для работ, обладающих большой неопределенностью на основе вероятностных (экспертных) методов, широко используемых в СПУ.

Таблица 2.2.1 – Этапы реализации проекта

№	Вид работ	Длительность, дни	Дата начала работ	Дата окончания работ	Исполнители
1	Разработка и утверждение тех- нического задания	17	08.10.2014	25.10.2014	РП
2	Расчет автоном- ного комплекса электроснабжения	188	26.10.2014	02.05.2015	И
3	Выбор оборудования	121	03.05.2015	01.09.2015	РП, И
4	Моделирование автономного комплекса электроснабжения в SCADA системе Trace Mode	151	02.09.2015	31.01.2016	И
5	Определение показателей качества электрической энергии в больнице	42	01.02.2016	14.03.2016	И
6	Оформление результатов расчета и выбора оборудования	45	15.03.2016	29.04.2016	РП, И

Результаты планирования показали, что время, затраченное на проектирование для инженера (И) составило 574 дня, для руководителя проекта (РП) — $183~\rm дня$.

Таблица 2.2.2 – Календарный план-график проведения НТП

Временной промежуток	Окт 2014	Ноя 2014	Дек 2014 - Апр 2015	Май 2015	Июн - Авг 2015	Сен 2015	Окт 2015 - Янв 2016	Фев 2016	Map 2016	Апр 2016
Количество дней	31	30	151	31	92	30	123	29	31	30
Номер вида работ										
1										
2						1				
3				(////						
4										
5										
6										/////

Таким образом, общая продолжительность проектирования составила 564 дня.

2.3. Смета затрат на научно-техническое проектирование

2.3.1. Амортизация оборудования для НТП

Амортизация — это процесс периодического переноса начальной стоимости основного средства или нематериального актива на производственные, коммерческие или общехозяйственные расходы — в зависимости от того, как этот актив используется.

Таблица 2.3.1 – Стоимость оборудования по состоянию на 01.04.2015 г.

No	Наименование	Цена за единицу,	Количество	Итоговая цена,
712	Паименование	тыс. руб.	Количество	тыс. руб.
1	Прибор Ресурс ПКЭ-1.5 [2]	52,000	1	52,000
	Компьютер с периферией и пред-			
2	установленным программным обес-	25,000	1	25,000
	печением [3]			
	77,000			

Рассчитаем амортизацию оборудования по следующей формуле:

$$A = \left(\frac{T_{\text{исп.обор.}}}{365}\right) \cdot C_{\text{обор.}} \cdot H_{\text{a}};$$

где $T_{\text{исп.обор}}$ – время использования оборудование, дни;

 $C_{\text{обор}}$ – стоимость оборудования, тыс. руб.;

 $H_{\rm a}$ – норма амортизации.

$$H_{\rm a} = \frac{1}{T_{\rm II.H. \, of opp.}};$$

где $T_{\text{п.и. обор.}}-$ срок полезного использования оборудования (10 лет).

$$A = \left(\frac{564}{365}\right) \cdot 77,000 \cdot \frac{1}{10} = 11,898$$
 тыс. руб.

2.3.2. Расчёт оплаты труда работников

В настоящую статью включается основная заработная плата научных и инженерно-технических работников, непосредственно участвующих в выполнении работ по данной теме. Величина расходов по заработной плате определяется исходя из трудоемкости выполняемых работ и действующей системы оплаты труда. Расчет основной заработной платы сотрудников приведен в таблице 2.3.2.

Таблица 2.3.2 – Расчет основной заработной платы сотрудников

№	Вид работ	Исполнители по категориям	Трудоемкость, челдн.	Заработная плата, прихо- дящаяся на один челдн., тыс. руб.	Всего заработ- гая плата по тарифу (окла- ду), тыс. руб.
1	Разработка и утвер- ждение техниче- ского задания	Руководитель проекта	17	1,257	21,369
2	Расчет автономного комплекса электроснабжения	Инженер	188	0,646	121,448
3	Выбор оборудова-	Руководитель проекта	121	1,257	152,097
	ния	Инженер	121	0,646	78,166
4	Моделирование автономного комплекса электроснабжения в SCADA системе Trace Mode	Инженер	151	0,646	97,546
5	Определение показателей качества электрической энергии в больнице	Инженер	42	0,646	27,132
6	Оформление ре- зультатов расчета и	Руководитель проекта	45	1,257	56,565
U	выбора оборудова- ния	Инженер	45	0,646	29,070
		Итого			583,393

Статья включает основную заработную плату работников, непосредственно занятых выполнением НТИ, (включая премии, доплаты) и дополнительную заработную плату:

$$3_{_{\rm 3\Pi}}=3_{_{\rm OCH}}+3_{_{\rm ДО\Pi}};$$

где 3_{осн} – основная заработная плата;

 $3_{\text{доп}}$ – дополнительная заработная плата (12-20 % от $3_{\text{осн}}$).

Среднедневная заработная плата рассчитывается по формуле:

$$3_{_{\mathrm{JH}}} = \frac{3_{_{\mathrm{M}}} \cdot \mathrm{M}}{F_{_{\mathrm{T}}}}$$

где $3_{\rm M}$ – месячный должностной оклад работника, руб.;

М – количество месяцев работы без отпуска в течение года:

 $F_{\rm д}$ — действительный годовой фонд рабочего времени научно-технического персонала, раб. дн.

Расчет баланса рабочего времени приведен в таблице 2.3.3.

Таблица 2.3.3 – Баланс рабочего времени

Показатели рабочего времени	Руководитель проекта	Инженер
Календарное число дней	365	365
Количество нерабочих дней		
- выходные дни	52	52
- праздничные дни	14	14
Потери рабочего времени		
- отпуск	56	56
- невыходы по болезни	14	17
Действительный годовой фонд рабочего времени	229	226

Месячный должностной оклад работника:

$$3_{_{\mathrm{M}}} = 3_{_{\mathrm{TC}}} \cdot (1 + k_{_{\mathrm{IIP}}} + k_{_{\mathrm{JI}}}) \cdot k_{_{\mathrm{p}}}$$

где 3_{rc} – заработная плата по тарифной ставке, руб.;

 $k_{\rm np}$ – премиальный коэффициент, равный 0,3 (т.е. 30% от $3_{\rm rc}$);

 $k_{\rm д}$ – коэффициент доплат и надбавок составляет примерно 0,2 – 0,5;

 $k_{\rm p}$ – районный коэффициент, равный 1,3 (для Томска).

Расчёт основной заработной платы приведён в таблице 2.3.4.

Таблица 2.3.4 – Расчет основной заработной платы

Исполнители	3 _{тс} , тыс. руб.	$k_{ m np}$	$k_{\scriptscriptstyle m L}$	$k_{ m p}$	3 _м , тыс. руб.	3 _{дн} , тыс. руб.	Т _р , раб. дн.	3 _{осн} , тыс. руб.
Руководи- тель проекта	28,924	0,3	0,5	1,3	67,682	1,257	229	287,853
Инженер	14,874	0,3	0,3	1,3	30,938	0,646	226	145,996
Итого								433,849

Тарифные ставки были приняты на основании данных опубликованных в [4].

2.3.3. Дополнительная заработная плата исполнителей темы

В данную статью включается сумма выплат, предусмотренных законодательством о труде, например, оплата очередных и дополнительных отпусков; оплата времени, связанного с выполнением государственных и общественных обязанностей; выплата вознаграждения за выслугу лет и т.п. (в среднем – 12 % от суммы основной заработной платы).

Дополнительная заработная плата рассчитывается исходя из 10-15% от основной заработной платы, работников, непосредственно участвующих в выполнение темы:

$$3_{\text{доп}} = k_{\text{доп}} \cdot 3_{\text{осн}}$$

где $k_{\text{доп}}$ – коэффициент дополнительной заработной платы.

Дополнительная заработная плата для руководителя:

$$3_{_{\mathrm{доп}}} = 0,12 \cdot 287,853 = 34,542$$
 тыс. руб.

Дополнительная заработная плата для инженера:

$$3_{\text{доп}} = 0,12 \cdot 145,996 = 17,520$$
 тыс. руб.

2.3.4. Отчисления во внебюджетные фонды (страховые отчисления)

В данной статье расходов отражаются обязательные отчисления по установленным законодательством Российской Федерации нормам органам государственного социального страхования (ФСС), пенсионного фонда (ПФ) и медицинского страхования (ФФОМС) от затрат на оплату труда работников.

Величина отчислений во внебюджетные фонды определяется исходя из следующей формулы:

$$3_{\text{RHefo}} = k_{\text{RHefo}} \cdot (3_{\text{OCH}} + 3_{\text{TOTI}})$$

где $k_{\text{внеб}}$ — коэффициент отчислений на уплату во внебюджетные фонды (27,1 % [5]) на пенсионный фонд, фонд обязательного медицинского страхования и пр.

Таблица 2.3.5 – Отчисления во внебюджетные фонды

Исполнитель	Основная заработная Дополнительная зара плата, тыс. руб. ная плата, тыс. руб				
Руководитель проекта	287,853	34,542			
Инженер	145,996 17,520				
Коэффициент отчислений	0,271				
	Итого				
Руководитель проекта	87,369				
Инженер	44,313				

2.3.5. Накладные расходы

Накладные расходы учитывают прочие затраты организации, не попавшие в предыдущие статьи расходов: печать и ксерокопирование материалов исследования, оплата услуг связи, электроэнергии, почтовые и телеграфные расходы, размножение материалов и т.д.

Их величина определяется по следующей формуле:

$$3_{\text{\tiny накл}} = ($$
затраты на тех.проект $) \cdot k_{\text{\tiny нp}}$,

где $k_{\rm hp}$ – коэффициент, учитывающий накладные расходы.

Величина коэффициента накладных расходов принимается в размере 16%.

2.3.6. Формирование сметы научно-технического проекта

Рассчитанная величина затрат технического проекта является основой для формирования бюджета затрат проекта, который при формировании договора с заказчиком защищается организацией в качестве нижнего предела затрат на разработку технической продукции.

Определение сметы затрат на технический проект приведено в таблице 2.3.6.

Таблица 2.3.6 – Определение сметы затрат на технический проект

№	Наименование статьи	Сумма, тыс. руб.	Структура за- трат, %
1	Амортизация оборудования для НТП	11,898	1,63
2	Затраты по заработной плате исполнителей проекта	485,911	66,54
3	Отчисления на социальные нужды	131,682	18,03
4	Накладные расходы	100,719	13,79
	Итого	730,210	100,00

Таким образом, смета затрат на разработку технического проекта составляет 730,210 тыс. руб., из которых более половины (66,54%) составляют затраты на оплату труда.

2.4. Определение целесообразности и эффективности научно-технического проекта

2.4.1. Определение ресурсоэффективности проекта

Определение эффективности происходит на основе расчета интегрального показателя эффективности научно-технического проекта. Его нахождение связано с определением двух средневзвешенных величин: финансовой эффективности и ресурсоэффективности. Так как определение финансовой эффективности не представляется возможным в данном случае, произведем оценку ресурсоэффективности научной разработки. Сравнение разработанного метода было произведено с двумя ближайшими аналогами.

Интегральный показатель ресурсоэффективности вариантов исполнения объекта исследования можно определить следующим образом:

$$I_{\mathrm{pi}} = \sum a_i \cdot b_i$$

где $I_{\rm pi}$ — интегральный показатель ресурсоэффективности;

 $a_{\rm i}$ – весовой коэффициент разработки;

 b_i – балльная оценка разработки, устанавливаем экспертным путем по выбранной шкале оценивания.

Для нормального функционирования данного метода необходимо принять ряд критериев. В данном случае выбираем следующие:

- надежность бесперебойное снабжение потребителей электроэнергией надлежащего качества;
- гибкость комплекс электроснабжения должен быть рассчитан на «рост» в случае необходимости увеличения нагрузки;
- безопасность это свойство комплекса электроснабжения сохранять с некоторой вероятностью безопасное состояние при выполнении заданных функций в условиях, установленных нормативнотехнической документацией (монтаж, эксплуатация и проведение ремонтных работ);
- простота эксплуатации комплекс электроснабжения должен обеспечиваться рациональным расположением элементов, ясностью и простотой схемы, чтобы персонал даже средней квалификации мог успешно выполнять все необходимые операции;
- экономичность комплекс электроснабжения должен быть выполнен таким образом, чтобы затраты на его создание, эксплуатацию и развитие были минимальными при условии соблюдения требований гибкости, безопасности и надежности.

После выбора критериев оцениваем их по 5-и бальной шкале и определяем интегральный показатель, с помощью которого делаем вывод об эффективности использования технического проекта.

Оценочные критерии для расчета интегрального показателя ресурсоэффективности приведены в таблице 2.4.1.

Таблица 2.4.1 – Оценочные критерии проекта

Критерии	Весовой коэффициент	Балльная оценка разработки
1. Надежность	0,25	5
2. Гибкость	0,15	4
3. Безопасность	0,25	5
4. Простота эксплуатации	0,25	5
5. Экономичность	0,10	2
Итого:	1,00	

Расчет интегрального показателя ресурсоэффективности:

$$I_{pi} = 0,25 \cdot 5 + 0,15 \cdot 4 + 0,25 \cdot 5 + 0,25 \cdot 5 + 0,10 \cdot 2 = 4,55$$

По 5-балльной шкале показатель ресурсоэффективности проекта имеет достаточно высокое значение, что говорит об эффективности использования технического проекта.

2.4.2. Анализ и оценка научно-технического уровня проекта

Для оценки научной ценности, технической значимости и эффективности проекта необходимо: рассчитать коэффициент научно-технического уровня. Коэффициент НТУ рассчитывается при помощи метода балльных оценок, в котором каждому из признаков НТУ присваивается определенное число баллов по принятой шкале. Общую оценку приводят по сумме балов по всем показателям с учетом весовых характеристик. Общая оценка рассчитывается по формуле:

$$HTY = \sum_{i=1}^{n} k_i \cdot \Pi_i$$

где k_i – весовой коэффициент i – го признака;

 Π_i — количественная оценка i — го признака.

Таблица 2.4.2 – Весовые коэффициенты НТУ

Признаки НТУ	Весовой коэффициент
Уровень новизны	0,5
Теоретический уровень	0,4
Возможность реализации	0,2

Таблица 2.4.3 – Шкала оценки новизны

Баллы	Уровень
1-4	Низкий НТУ
5-7	Средний НТУ
8-10	Сравнительно высокий НТУ
11-14	Высокий НТУ

Таблица 2.4.4 – Значимость теоретических уровней

Характеристика значимости теоретических уровней		
Установка законов, разработка новой теории		
Глубокая разработка проблем, многосторонний анализ, взаимозависи- мость между факторами	8	
Разработка способа (алгоритм, вещество, устройство, программы)	6	
Элементарный анализ связей между факторами (наличие гипотезы, объяснение версий, практические рекомендации)	2	
Описание отдельных факторов (вещества, свойств, опыта, результатов)	0,5	

Таблица 2.4.5 – Возможность реализации по времени и масштабам

Время реализации	Баллы		
В течение первых лет			
От 5 до 10 лет	4		
Свыше 10 лет	2		
Масштабы реализации			
Масштабы реализации	Баллы		
Масштабы реализации Одно или несколько предприятий	Ба ллы 2		
	Баллы 2 4		

$$\begin{aligned} k_1 &= 0,5; \, \Pi_1 = 6; \\ k_2 &= 0,4; \, \Pi_2 = 8; \\ k_3 &= 0,2; \, \Pi_3 = 10; \\ k_4 &= 0,2; \, \Pi_3 = 2; \end{aligned}$$

$$HTV = 0,5 \cdot 6 + 0,4 \cdot 8 + 0,2 \cdot 10 + 0,2 \cdot 2 = 8,6.$$

По полученным результатам расчета коэффициента научно-технического уровня можно сделать вывод, что данный проект имеет среднюю значимость теоретического и практического уровня, и при этом используется в широком спектре отраслей.

2.4.3 Оценка возможных рисков

При оценке важности рисков оценивается вероятность их наступления (P_i) . По шкале от 0 до 100 процентов: 100 — наступит точно, 75 — скорее всего наступит, 50 — ситуация неопределенности, 25 — риск скорее всего не наступит, 0 — риск не наступит. Оценка важности риска оценивается весовым коэффициентом (w_i) . Важность оценивается по десятибалльной шкале b_i . Сумма весовых коэффициентов должна равняться единице. Оценка важности рисков приведена в таблице 2.4.6.

Таблица 2.4.6 – Экономические риски

No	Риски	Pi	bi	Wi	P _i *w _i
1	Инфляция	100	1	0,019	1,961
2	Экономический кризис	75	2	0,039	2,941
3	Недобросовестность поставщиков	25	6	0,117	2,941
4	Непредвиденные расходы в плане работ	50	7	0,137	6,863
5	Снижение уровня спроса на продукцию	25	10	0,196	4,902
6	Сложность выхода на мировой рынок вследствие монополизированности рынка	50	7	0,137	6,863
7	Колебания рыночной конъюнктуры	25	6	0,117	2,941
8	Отсутствие в числе сотрудников экономистов	25	2	0,039	0,980
9	Низкие объемы сбыта	50	10	0,196	9,804
	Сумма		51	1,000	40,196

Таблица 2.4.7 – Технологические риски

No	Риски	Pi	bi	Wi	Pi*wi
1	Возможность поломки оборудования	25	7	0,250	6,250
2	Низкое качество поставленного оборудования	25	9	0,321	8,036
3	Неправильная сборка оборудования	75	8	0,286	21,429
4	Опасность для работающего персонала и аппаратуры	50	4	0,143	7,143
	Сумма		28	1	42,857

Таблица 2.4.8 – Научно-технические риски

No	Риски	Pi	bi	Wi	Pi*wi
1	Развитие конкурентных технологий	75	7	0,146	10,938
2	Создание новых методов синтеза	50	7	0,146	7,292
3	Риск невозможности усовершенствования технологии	25	8	0,167	4,167
4	Отсутствие результата в установленные сроки	50	7	0,146	7,292
5	Получение отрицательного результата при внедрении в производство	50	10	0,208	10,417
6	Несвоевременное патентование	25	9	0,188	4,688
	Сумма		48	1,000	44,792

Далее производим расчет общих рисков, результат которого приведен в таблице 2.4.9.

Таблица 2.4.9 – Общая оценка риска проекта

Виды рисков в группе	Pi	bi	Wi	Pi*Wi
Экономические	40,196	10	0,40	16,078
Технологические	42,857	9	0,36	15,429
Научно-технические	44,792	6	0,24	10,750
Итого		25	1	42,257

Итоговая оценка риска проекта составила порядка 40%, т.е. проект имеет

право на жизнь, хотя и не лишен препятствий.

Для того чтобы избежать риски или минимизировать их воздействие на проект необходимо проводить мероприятия по борьбе с рисками.

Таким образом, анализируя результаты данного раздела, можно заключить, что выполняемый проект имеет высокую значимость теоретического и практического уровня, а также приемлемый уровень рисков. Это подтверждает целесообразность выполняемого научно-технического проекта.

Выводы по разделу

В ходе выполнения раздела «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение» были решены следующие задачи:

- 1. Проведена оценка коммерческого потенциала и перспективности проведения научно-технического проекта на примере SWOT-анализа, результат которого показал высокий потенциал проектирования.
- Определен полный перечень работ, проводимых при выполнении научно-технического проекта. Общее число работ составило 6.
 Определена трудоемкость проведения работ. Ожидаемая трудоемкость работ для руководителя проекта составила 183 дня, для инженера – 574 дня. Общая максимальная длительность выполнения работы составила 564 дня.
- 3. Суммарный бюджет затрат НТП составил 730,210 тысяч рублей. Расчет бюджета осуществлялся на основе следующих пунктов:
 - амортизация оборудования для НТП;
 - основная заработная плата исполнителей темы;
 - дополнительная заработная плата исполнителей темы;
 - отчисления во внебюджетные фонды (страховые отчисления);

- накладные расходы.
- 4. Определена целесообразность и эффективность научного проекта путем анализа и оценки научно-технического уровня. В результате проект имеет высокую значимость теоретического и практического уровня.

Следует отметить важность для проекта в целом проведенных в данной главе работ, которые позволили объективно оценить эффективность проводимого научно-технического проектирования.