УДК 533.93

ИЗМЕРЕНИЕ СОСТАВА И ЭНЕРГЕТИЧЕСКОГО СПЕКТРА ИМПУЛЬСНОГО ИОННОГО ПУЧКА ВРЕМЯПРОЛЕТНЫМ МЕТОДОМ ВЫСОКОГО РАЗРЕШЕНИЯ

Ю.И. Исакова, А.И. Пушкарев, В.А. Тарбоков

Томский политехнический университет

E-mail: aipush@mail.ru

Предложена методика оперативного контроля параметров ионного пучка, формируемого импульсным генератором мощных ионных пучков ТЕМП-4М в режиме магнитной самоизоляции, ускоряющее напряжение 200...250 кВ, плотность ионного тока 20...40 А/см². Использована времяпролетная диагностика на основе одного быстродействующего датчика-цилиндра Фарадея с магнитной отсечкой. Методика позволяет определить состав пучка (тип ионов и кратность ионизации), абсолютные значения плотности тока ионов и энергетический спектр для каждого типа ионов с погрешностью не хуже ±10 %.

Ключевые слова:

Ионный пучок, времяпролетный метод, состав пучка, энергетический спектр, цилиндр Фарадея.

Key words:

Ion beam, time-of-flight method, beam composition, energy distribution, Faraday cup.

Совершенствование продукции машиностроения затруднено без применения новых прогрессивных технологических процессов, позволяющих повысить ресурс и надежность деталей и узлов в самых жестких условиях эксплуатации. Этим вызвано развитие методов поверхностного упрочнения лазерным излучением, электронным пучком, ионной имплантацией, мощными ионными пучками (МИП) и др. Воздействие ионным пучком гигаватной мощности с плотностью энергии 0,5...1 Дж/см² обеспечивает нагрев поверхностного слоя обрабатываемого изделия со скоростью 10⁹ К/с и охлаждение со скоростью 10⁸...10¹⁰ К/с, что позволяет получать в поверхностных слоях составы и наноразмерные структуры, недоступные ни одному из традиционных металлургических способов. В результате улучшаются свойства материалов: твердость, прочность, износостойкость; повышаются эксплуатационные характеристики изделий из них. Ионный состав и энергетический спектр МИП определяет глубину модифицированного слоя обрабатываемого изделия и величину удельного энерговыделения. Поэтому в процессе оптимизации режима обработки изделия важно контролировать состав и количественное соотношение ионов в пучке.

Методику измерения состава ионного пучка при ускорении ионов в электрическом поле и их пространственном разделении посредством магнитного поля впервые предложил в 1913 г. J. Tomson. В 1919 г. Е.W. Aston сконструировал прототип современного магнитостатического масс-спектрометра. Для регистрации ионов с большой массой в спектрометре Томсона необходимо использовать магнитное поле с индукцией более 1...5 Тл, что увеличивает габариты и массу прибора. Детальную информацию о составе пучка, энергетическом разбросе групп ионов в спектрометре Томсона получают с использованием с трековой диагностики на основе пластиков [1]. Однако обработка регистрирующих пластин требует много времени и не позволяет оперативно контролировать параметры

пучка. Использование в спектрометре Томсона фоточувствительных полупроводниковых матриц (для регистрации пространственного разделения ионов) затруднено в высоковольтных источниках ионных пучков и при регистрации МИП с плотностью тока выше 10 А/см² из-за вероятности разрушения фоточувствительных элементов.

Идея времяпролётного масс-анализатора принадлежит W. Stephens, предложившему конструкцию прибора в 1946 г. [2]. Первый анализатор был построен W. Wiley и I. MacLaren в 1955 г. [3]. К достоинствам времяпролетных масс-анализаторов относится высокий верхний порог детектируемой массы иона, ограниченный только резким уменьшением чувствительности ионного детектора. Состав МИП определяют времяпролетным методом с использованием двух измерителей ионного тока, установленных на разном расстоянии от диода [4]. В работе [5] представлен более подробный обзор истории развития времяпролётных масс-спектрометров с момента их изобретения до настоящего времени.

Использование быстродействующего цилиндра Фарадея и широкополосного осциллографа позволяет оперативно контролировать ионный пучок с использованием только одного датчика, установленного на достаточном расстоянии от диода. Цель выполненной работы — разработка методики оперативного контроля параметров ионного пучка наносекундной длительности.

1. Экспериментальная установка

Исследования были проведены на ускорителе ТЕМП-4 [6] в режиме формирования двух импульсов — первый отрицательный (≈100 нс, 100...150 кВ) и второй положительный (80 нс, 200...250 кВ). Состав пучка: ионы углерода и протоны, плотность ионного тока на мишени 20...150 А/см², частота импульсов 5–10 имп./мин. Ускоритель состоит из емкостного накопителя генератора импульсных напряжений, наносекундного генератора и вакуумного диода с магнитной самоизоляцией. Наносекундный генератор выполнен в виде коаксиальной двойной формирующей линии с жидким диэлектриком (водой), волновое сопротивление 4,5 Ом, содержит основной и предварительный газовые разрядники. Для оптимизации процесса формирования взрывоэмиссионной плазмы на поверхности потенциального электрода конструкция ускорителя ТЕМП-4 была модернизирована [7]. Блок-схема диодного узла модернизированного ускорителя ТЕМП-4М, схема измерения напряжения и плотности ионного тока в полосковом диоде с самоизоляцией показана на рис. 1.

Рис. 1. Схема диодного узла: 1) потенциальный электрод диода, 2) заземленный электрод, 3) колимированный цилиндр Фарадея, 4) пояс Роговского, 5) делитель напряжения

Ток диодного узла измеряли поясом Роговского с обратным витком. Плотность ионного тока определяли коллимированным цилиндром Фарадея (КЦФ) с магнитной отсечкой электронов (0,4 Тл). Напряжение на потенциальном электроде контролировали резистивным делителем напряжения, установленным в диодной камере, и высокочастотным высоковольтным делителем, установленным перед диодным узлом. Электрические сигналы с датчиков регистрировали осциллографом Tektronix 3052В (500 МГц, 5·10⁹ отсч./с). Погрешность синхронизации электрических сигналов не превышала 0,5 нс. Калибровка диагностического оборудования показала, что оно корректно отражает работу ускорителя в режиме короткого замыкания и при работе на активную нагрузку 6...10 Ом (ускоряющее напряжение 150...250 кВ). Точность измерения напряжения, полного тока диода, плотности ионного тока, частотные характеристики диагностического оборудования позволяют рассчитать импеданс диода и параметры ионного тока с погрешностью не хуже ±10 %.

На рис. 2 приведены типичные осциллограммы, характеризующие работу диодного узла ускорителя ТЕМП-4М.

Рис. 2. Осциллограммы: 1) ускоряющего напряжения, 2) полного тока, 3) плотности ионного тока плоского диода с самоизоляцией. Зазор 8 мм, расстояние до КЦФ 18 см

Исследования выполнены на плоском диоде площадью 20×4 см². Потенциальный электрод изготовлен из графита, заземленный электрод – из нержавеющей стали с прорезями шириной 4 мм, прозрачность 60 %. Зазор между потенциальным и заземленным электродами выбирался из условия согласования импеданса диода с волновым сопротивлением двойной формирующей линии и составлял 7,5...8 мм. Полосковый диод с магнитной самоизоляцией эффективно работал при давлении 0,1 Па с ресурсом более 10⁵ импульсов. Частота генерации импульсов МИП ограничивалась только тепловым режимом диода.

2. Исследование состава пучка

Для анализа состава ионного пучка, формируемого диодом, использовали явление пространственного разделения разных ионов по пути движения от диода до регистрирующего устройства -КЦФ. При ускорении в анод-катодном зазоре диода ионы разной массы и степени ионизации приобретают разную скорость. Предполагается, что в диоде ионы разных типов формируются синхронно в течение импульса ускоряющего напряжения, и на пути дрейфа их скорость не меняется. Плотность ИОНОВ пучка, формируемого ускорителем ТЕМП-4М, менее 10^{13} см⁻², поэтому вероятность их столкновения (и изменения скорости) в пространстве дрейфа низка. Для каждого момента времени генерации ионного пучка по величине напряжения, приложенного к диоду (шаг 0,4 нс), рассчитывали плотность тока определенного типа ионов и величину времени задержки прихода этих ионов в КЦФ. Расчетные кривые сопоставляли с экспериментальными данными.

Задержка сигнала, вызванная движением ионов от диода до КЦФ, равна:

$$\Delta t = \frac{D}{v_i},\tag{1}$$

где D – расстояние от КЦФ до заземленного электрода диода; v_i – скорость ионов.

Рис. 3. Осциллограммы: 1) напряжения и 2) плотности ионного тока в плоском диоде. Расчетная плотность тока: кривая 3 – для протонов; кривая 4 – для ионов С⁺. Расстояние до КЦФ: а) 14; б) 17 см

При прохождении анод-катодного промежутка диода ион приобретает кинетическую энергию, равную:

$$E = \frac{m_i v_i^2}{2} = z U,$$
 (2)

где U – напряжение, приложенное к диоду; m_i – масса иона; z – заряд иона в Кл.

Из соотношений (1) и (2) получим выражение для расчета задержки прихода ионов в КЦФ:

$$\Delta t = D \sqrt{\frac{m_i}{2zU}}.$$
(3)

В режиме ограничения объемным зарядом, в нерелятивистском приближении, с учетом расширения плазменной эмиссионной поверхности величина плотности ионного тока определяется соотношением Чайлда—Ленгмюра [8].

$$J_{uou} = \frac{4\alpha \,\varepsilon_0 \sqrt{2z}}{9\sqrt{m_i}} \frac{U^{3/2}}{(d_0 - vt)^2},\tag{4}$$

где d_0 — начальный зазор анод-катод; ε_0 — абсолютная диэлектрическая проницаемость; v — скорость расширения плазмы; α =1,86 в ионном режиме диода, когда электронно-ионные потоки в межэлектродном зазоре достигают предельных величин.

Скорость расширения взрывоэмиссионной плазмы при расчетах по соотношению (4) определяли по импедансу диода по методике [9]. На рис. 3 приведены типичные осциллограммы ускоряющего напряжения (второй импульс) и плотности ионного тока. С увеличением расстояния от диода до КЦФ задержка ионного тока относительно ускоряющего напряжения увеличивается. При этом экспериментальные значения плотности ионного тока и расчетные по соотношениям (3) и (4) также хорошо совпадают (рис. 3, δ). Отсутствие изменения состава пучка, формируемого плоским дио-

дом, в процессе транспортировки подтверждает корректность использования разработанной методики для диагностики МИП, генерируемым ускорителем ТЕМП-4М.

3. Определение энергетического спектра ионов

Энергетический спектр ионов является одним из важнейших параметров МИП, определяющих его распределение по глубине при поглощении в конденсированной среде. Разработанная методика позволяет оперативно контролировать спектр отдельно для каждого типа ионов. В этом случае для каждого значения ускоряющего напряжения, регистрируемого осциллографом (шаг 0,4 нс), по соотношению (3) рассчитывали временную задержку и строили кривую изменения кинетической энергии определенного типа ионов, синхронную с осциллограммой сигнала с КЦФ. На рис. 4 приведены расчетные значения для ионов углерода, генерируемых в диоде с магнитной самоизоляцией (данные рис. 3, δ).

Рис. 4. Изменение в процессе генерации ионного пучка: 1) плотности ионного тока и 2) кинетической энергии ионов

Полученные данные позволяют определить распределение ионов по энергии. Энергетические спектры ионов, формируемые плоским и фокусирующим диодами, приведены на рис. 5.

Рис. 5. Спектры плотности ионов 1) С⁺и 2) протонов, формируемых плоским диодом

Выполненные исследования энергетического спектра ионов, формируемых ускорителем ТЕМП-4М в режиме магнитной самоизоляции показали, что основная часть ионов углерода и протонов

СПИСОК ЛИТЕРАТУРЫ

- Бойко В.И., Скворцов В.А., Фортов В.Е., Шаманин И.В. Взаимодействие импульсных пучков заряженных частиц с веществом. – М.: Физматлит, 2003. – 288 с.
- Stephens W.E. A Pulsed Mass Spectrometer with Time Dispersion // Phys. Rev. – 1946. – V. 69. – № 12. – P. 691–692.
- Wiley W.C., MacLaren I.H. Time-of-Flight Spectrometer with Improved Resolution // Rev. Sci. Instr. 1955. V. 26. № 12. P. 1150–1157.
- Москалев В.А., Сергеев Г.И. Измерение параметров пучков заряженных частиц. – М.: Энергоатомиздат, 1991. – 240 с.
- Mamyrin B.A. Time-of-flight mass spectrometry (concepts, achievements, and prospects) // International Journal of Mass Spectrometry. – 2001. – V. 206. – № 3. – P. 251–266.

имеет кинетическую энергию более 150 кэВ. Доля низкоэнергетичных ионов не превышает 15...20 %.

Заключение

Предложена методика оперативного контроля параметров ионного пучка, формируемого импульсным генератором в режиме магнитной самоизоляции при ускоряющем напряжении 200...250 кВ и плотности ионного тока 20...40 А/см². Использована времяпролетная диагностика на основе одного быстродействующего датчика-цилиндра Фарадея с магнитной отсечкой.

Методика позволяет определить состав пучка и абсолютные значения суммарной плотности ионов и плотности ионов разной массы и кратности ионизации, энергетический спектр каждого типа ионов с погрешностью не хуже ± 10 %. При контроле параметров пучка не требуется сложное оборудование и длительная обработка результатов измерений. Методика апробирована на импульсном ионном ускорителе ТЕМП-4М, формирующем ионный пучок сложного состава мощностью 6....8 ГВт с интегральной плотностью до $2 \cdot 10^{13}$ см⁻².

Работа выполнена при финансовой поддержке гранта РФФИ № 08-08-12086.

- Remnev G.E., Isakov I.F., Pushkarev A.I., et al. High Intensity Pulsed Ion Beam Sources and Their Industrial Applications // Surf. and Coatings Technol. – 1999. – V. 114. – P. 206–212.
- Патент 86374 РФ. МПК⁸ Н05Н 9/00. Импульсный ионный ускоритель / А.И. Пушкарев, В.А. Тарбоков, Р.В. Сазонов. Заявлено 27.04.2009; Опубл. 27.08.2009, Бюл. № 24. – 5 с.: ил.
- Langmuir I. The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum // Phys. Rev. – 1913. – V. 2. – P. 450–455.
- Pushkarev A.I., Sazonov R.V. Research of Cathode Plasma Speed in Planar Diode With Explosive Emission Cathode // IEEE Transactions on Plasma Science. – 2009. – V. 37. – № 10. – Part 1. – P. 1901–1907.

Поступила 03.02.2010 г.