#### СПИСОК ЛИТЕРАТУРЫ

- Назаров Д.С., Озур Г.Е., Проскуровский Д.И. Генерация низкоэнергетичных сильноточных электронных пучков в пушке с плазменным анодом // Известия вузов. Физика. – 1994. – Т. 37. – № 3. – С. 100–114.
- Григорьев В.П., Коваль Т.В., Кухта В.Р., Рахарджо П., Уемура К. Исследование транспортировки и фокусировки низкоэнергетического электронного пучка в ионизованном аргоне низкого давления // Журнал технической физики. – 2008. – Т. 78. – № 1. – С. 104–108.
- Крейндель М.Ю., Литвинов Е.А., Озур Г.Е., Проскуровский Д.И. Нестационарные процессы в начальной стадии формирования сильноточного электронного пучка в плазмонаполненном диоде // Физика плазмы. – 1991. – Т. 17. – № 12. – С. 1425–1431.
- Хокни Р., Иствуд Дж. Численное моделирование методом частиц. – М.: Мир, 1987. – 640 с.

Поступила 16.11.2009 г.

УДК 519.673+533.9

# МОДЕЛИРОВАНИЕ ИСКАЖЕНИЯ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ В ПАКЕТЕ COMSOL MULTIPHYSICS ПРИ ТРАНСПОРТИРОВКЕ ЭЛЕКТРОННЫХ ПУЧКОВ

В.П. Григорьев, А.С. Огородников

Томский политехнический университет E-mail: ogorodnikov@sibmail.com

В неоднородной плазме могут возникать диамагнитные токи, приводящие к искажению внешнего магнитного поля. Последнее необходимо учитывать при создании приборов и установок с использованием замагниченной плазмы. В частности, этот эффект может существенно повлиять на процессы, связанные с транспортировкой пучков заряженных частиц в плазменных и газовых средах. Поэтому важно оценить влияние этого эффекта на искажение внешнего магнитного поля в зависимости от параметров плазмы. Эта задача сводится к решению системы нелинейных уравнений в частных производных и для ее решения применяется система компьютерной математики COMSOL Multiphysics.

#### Ключевые слова:

Неоднородная плазма, диамагнитные токи, замагниченная плазма, решение нелинейных уравнений, пакет COMSOL Multiphysics.

## Key words:

Nonuniform plasma, diamagnetic currents, magnetized plasma, the decision of the nonlinear equations, modelling package COMSOL Multiphysics.

Известно, что магнитные поля с успехом применяются для удержания плазмы и фокусировки пучков заряженных частиц [1, 2]. Однако при наличии неоднородности плазмы и магнитного поля в плазме могут возникать диамагнитные токи, приводящие к искажению внешнего магнитного поля. Последнее необходимо учитывать при создании приборов и установок с использованием замагниченной плазмы. В частности, этот эффект может существенно повлиять на процессы, связанные с транспортировкой пучков заряженных частиц в плазменных и газовых средах [3]. Поэтому важно оценить влияние этого эффекта на искажение внешнего магнитного поля в зависимости от параметров плазмы и уровня и градиента внешнего магнитного поля. Эта задача является сложной, так как сводится к решению нелинейных уравнений и для ее решения целесообразно применить численные методы.

В данной работе проблема искажения магнитного поля в замагниченной плазме исследуется на основе численного моделирования с использованием пакета COMSOL Multiphysics.

В качестве расчётной выбиралась аксиальносимметричная область в цилиндрической системе координат  $(r, \varphi, z)$  (рис. 1), которая соответствует типичным системам транспортировки электронных пучков в плазменных каналах [3].

Внешнее магнитное поле в такой системе создаётся двумя одинаковыми катушками с плотностью тока в катушке

$$\left(\mathbf{J}^{e}\right)_{\varphi} = \frac{In}{h\Delta R},\tag{1}$$

где I – ток в катушке, n – число витков, h и  $\Delta R$  – размеры катушки вдоль оси z и по радиусу соответственно.

Плотность диамагнитного тока, возникающего в неоднородной плазме, зависит от давления в плазме, величины внешнего магнитного поля и его градиента и описывается в общем случае выражением [4, 5]:

$$\mathbf{J}_{M} = -\nabla \times (p_{\perp} \mathbf{B} / B^{2}), \qquad (2)$$

где  $p_{\perp} = n_0 T_e f(r) = p_0 f(r)$  – давление плазмы поперёк силовых линий внешнего магнитного поля;  $n_0$  – концентрация частиц плазмы на оси канала транспортировки;  $T_e$  – электронная температура в эВ; f(r) – функция, описывающая неоднородность давления плазмы по радиусу.



**Рис. 1.** Расчётная область: 1) плазма; 2) катод; 3) мишень; 4) труба дрейфа; 5) внешняя область; 6,7) соленоидальные катушки

В аксиально-симметричной системе имеется только азимутальная составляющая тока намагниченности плазмы

$$(\mathbf{J}_{M})_{\varphi} = \frac{p_{\perp}}{B^{2}} \begin{bmatrix} p_{\perp}^{-1} \frac{dp_{\perp}}{dr} B_{z} + \left(\frac{\partial B_{z}}{\partial r} - \frac{\partial B_{r}}{\partial z}\right) - \\ -\frac{2}{B} \left(\frac{\partial B}{\partial r} B_{z} - \frac{\partial B}{\partial z} B_{r}\right) \end{bmatrix}.$$
 (3)

Магнитное поле, связанное с суммарным током (1) и (3) описывается азимутальной составляющей векторного потенциала  $A_{\varphi}(r,z)$ . Однако, чтобы избежать особенностей на оси r=0, удобно ввести новую переменную  $u=A_{\varphi}(r,z)/r$ . В новой переменной u=u(r,z) выражение для тока намагниченности плазмы запишется в виде:

$$(\mathbf{J}_{M})_{\varphi} = \frac{p_{\perp} \left( 2ru_{z}(2u + ru_{r})(3u_{z} + 2ru_{rz}) + + ((2u + ru_{r})^{2} - (ru_{z})^{2})(3u_{r} + r(u_{rr} - u_{zz}))\right)}{((ru_{z})^{2} + (2u + ru_{r}))^{2}} + \frac{\frac{dp_{\perp}}{dr}(2u + ru_{r})((ru_{z})^{2} + (2u + ru_{r})^{2})}{((ru_{z})^{2} + (2u + ru_{r}))^{2}}.$$
(4)

Здесь  $u_{rz}$ ,  $u_{\pi}$  и  $u_{zz}$  – частные производные по соответствующим координатам.

Используя (1) и (4), получим нелинейное уравнение для определения скалярной функции u=u(r,z):

$$3u_r + r(u_{rr} + u_{zz}) = -\mu_0((\mathbf{J}^e)_{\varphi} + (\mathbf{J}_M)_{\varphi}(u, r, z)).$$
(5)

Магнитная индукция рассчитывается по формулам:

$$B_z = 2u + ru_r, \ B_r = -ru_z.$$

Граничные условия на оси r=0 задавались как условия аксиальной симметрии; на внешних границах задавались условия магнитной изоляции  $A_{\phi}=0$ . Расчеты проводились для наиболее интересных, часто применяемых параметров: I=160 A, n=270 витков, h=0,052 м,  $\Delta R=0,026$  м,  $n_0=10^{10}...10^{15}$  см<sup>-3</sup>,  $T_e=1...10$  эВ,  $p_0=1...6000$  Па.

Функция распределения давления плазмы f(r), в зависимости от радиуса r, выбиралась в виде (рис. 2).



ис. 2. Функции распределения давления плазмы в зависимости от радиуса r: 1) f<sub>1</sub>=1; 2) f<sub>2</sub>=1−(r/3)<sup>2</sup>, если r<3, для r≥3, f<sub>2</sub>=0; 3) f<sub>3</sub>=1−(r/9,5)<sup>2</sup>, r в см

Краевая задача (1)–(5) решалась в системе COMSOL Multiphysics в прикладном квазистатическом режиме (электромагнитный модуль). Вся расчётная область покрывалась неравномерной сеткой из треугольников. Для реализации метода конечных элементов применялся нелинейный решатель.

#### Обсуждение результатов

При решении нелинейной краевой задачи вычислялась плотность тока намагниченности плазмы  $J_{\varphi}$  при различных функциях распределения давления (рис. 3). В приосевой области плотность тока в 4...6 раз больше для функции распределения  $f_2$ , чем для функции распределения  $f_3$ , и слабо зависит от абсолютной величины давления. В области, близкой к стенкам дрейфовой трубы, плотность тока намагниченности зависит от абсолютной величины давления (увеличивается в 3...5 раз с ростом давления в 3 раза).

Анализ результатов моделирования показывает, что продольная составляющая магнитной индукции  $B_z$  зависит от давления: уменьшается на величину до 12 % с ростом давления от 1 до 6000 Па на оси системы. Уменьшение  $B_z$  зависит от вида функции радиального распределения давления плазмы f(r): при параболической зависимости  $f_3$  уменьшение больше в 1,5...2 раза, чем при  $f_2$  (рис. 4).



**Рис. 3.** Зависимости плотности тока намагниченности плазмы Ј<sub>φ</sub> от расстояния до катода *z*: а) *r*=2 см, б) *r*=5 см. Давление плазмы *p*<sub>⊥</sub>: 1) (1...6000)*f*<sub>1</sub>; 2) 2000*f*<sub>2</sub>; 3) 4000*f*<sub>2</sub>; 4) 6000*f*<sub>2</sub>; 5) 2000*f*<sub>3</sub>; 6) 4000*f*<sub>3</sub>; 7) 6000*f*<sub>3</sub>, Па



Рис. 4. Продольная составляющая магнитной индукции В₂ в зависимости от расстояния до катода z: a) r=2 см, б) r=5 см. Давление плазмы p₁: 1) (1...6000)f₁; 2) 2000f₂; 3) 4000f₂; 4) 6000f₂; 5) 2000f₃; 6) 4000f₃; 7) 6000f₃, Па



**Рис. 5.** Радиальная составляющая магнитной индукции B<sub>r</sub> в зависимости от расстояния до катода z: a) r=2 см, б) r=5 см. Давление плазмы p<sub>⊥</sub>: 1) (1...6000)f<sub>1</sub>; 2) 2000f<sub>2</sub>; 3) 4000f<sub>2</sub>; 4) 6000f<sub>2</sub>; 5) 2000f<sub>3</sub>; 6) 4000f<sub>3</sub>; 7) 6000f<sub>3</sub>, Па

Радиальная составляющая магнитной индукции  $B_r$  также зависит от давления: уменьшается до двух раз вдоль трубы дрейфа с расстоянием от катода 0...5,8 см, затем растёт с ростом давления от 1 до 6000 Па, при этом бо́льшие изменения (в 2...20 раз) наблюдаются в пристеночной области (рис. 5).

# Выводы

- 1. С использованием пакета COMSOL Multiphysics проведено моделирование диамагнитных искажений, возникающих в плотной плазме при транспортировке электронных пучков.
- Получено нелинейное дифференциальное уравнение в частных производных для определения скалярной функции, описывающей азимутальную составляющую векторного потенциала

### СПИСОК ЛИТЕРАТУРЫ

- Лукьянов С.Ю. Горячая плазма и управляемый ядерный синтез. – М.: Наука, 1975. – 408 с.
- Диденко А.Н., Григорьев В.П., Усов Ю.П. Мощные электронные пучки и их применение. – М.: Атомиздат, 1977. – 280 с.
- Григорьев В.П., Коваль Т.В., Кухта В.Р., Рахарджо П., Уемура К. Исследование транспортировки и фокусировки низкоэнергетического электронного пучка в ионизованном аргоне низкого

магнитного поля замагниченной плазмы в аксиально-симметричной системе.

- Плотность тока намагниченности при сосредоточении плазмы в приосевой области возрастает на порядок по сравнению с равномерным заполнением трубы дрейфа плазмой.
- Продольная составляющая магнитной индукции уменьшается на 12 % с ростом давления от 1 до 6000 Па на оси системы; ее уменьшение зависит от вида функции радиального распределения давления плазмы.
- Радиальная составляющая магнитной индукции также зависит от давления: уменьшается до двух раз вдоль трубы дрейфа с расстоянием от катода 0...5,8 см, затем растёт с увеличением давления от 1 до 6000 Па.

давления // Журнал технической физики. – 2008. – Т. 81. – Вып. 1. – С. 104–108.

- Голант В.Е., Жилинский А.П., Сахаров И.Е. Основы физики плазмы. – М.: Атомиздат, 1977. – 384 с.
- Франк-Каменецкий Д.А. Лекции по физике плазмы. М.: Атомиздат, 1968. – 97 с.

Поступила 02.12.2009 г.