
Technical sciences

145

Introduction

In last years development of geoinformation systems
(GIS) has resulted in an enhanced attention from the si�
de of developers of control systems of databases
(CSDB) to work with the space data. Growing require�
ments of GIS to volumes and reliability of a data stora�
ge have resulted in their integration with powerful uni�
versal CSDB, as a rule, of independent developers. In
this case support of work with the space data (support of
space types and space indexing) is required from CSDB.

CSDB MS SQL Server is one of leaders in the mar�
ket of server CSDB`s. In spite of the fact that the maj�
ority of its basic competitors already have even basice
means for storage of the space data, they are absent in
products from Microsoft (both in MS SQL Server 2000,
and in 2005 [1, 2]). In the given work the variant of rea�
lization of space indexing in CSDB MS SQL Server
2000 by methods Z�and XZ�indexing which are compa�
red with work of standard indexes is examined. Nume�
rical experiment gives representation as far as it is possi�
ble to increase velocity of performance of window
inquiries in various conditions.

1. Space CSDB and space indexing

The basic features of space CSDB consist that they
support the appropriate types of the data, inquiries in
language and mechanisms of indexing.

As examples of space inquiries it is possible to name [3, 4]:

• window inquiries (window query or range query);

• search of k nearest neighbours (k nearest neighbors
query или k�NN query);

• inquiries with space join (spatial join).

In the given work efficiency of performance of win�
dow inquiries is investigated.

In the scheme of work of the space inquiries usually
two stages or two steps of a filtration are selected. CSDB,
having weak space support, develop only the first step (a
rough filtration). As a rule, at this stage the approached,
approximated representation of objects is used. The
most widespread type of approximation – the minimum
bounding rectangle (MBR – Minimum Bounding Rec�
tangle) [5]. Function of a secondary filtration is assigned
to GIS or another client appendix. Working with such
CSDB as MS SQL Server, it is quite justified to use re�
presentation of objects as MBR at a database level.

A correct use of indexes is decisive factor at optimi�
zation of inquiries to a DB. The special methods of in�
dexing, for example, on the basis of R�trees, exist for
space types of the data [6, 7].

The detailed review of space access methods (spatial
access methods) is presented in [3]. If the CSDB has no
means of space indexing it is possible to realize such in�
dexing by the own forces. These expansions sometimes
are named «superstructures», «cartridges» or «plaginas».
They are realized by means of triggers and stored proce�
dures in the language used in the CSDB, or external pro�
cedures, or by means of an application server (applica�
tion server) if it is not enough built – in language means.

The method of Z�indexing. The method is based on
use of a covering curve, or a space filling curve (the Pea�
no curve, space filling curve). The covering curve splits
space into areas (cells), each of them obtains the num�
ber (Peano code) and, thus, the order is set. Extended
objects and inquiry area are approximated by a set of
cells (and corresponding Peano codes), the example is
shown on Fig. 1. Each cell are corresponded by a range
of a possible Peano codes that enables to transform
inquiry on area into range inquiry which is optimized by
means of a standard one�dimensional index.

Each value of the Peano code can be put in confor�
mity with the quadro�tree unit. Therefore, using a ter�
minology of quadro�trees, we shall name the cells to be
ordered as quadrants. Quadrant is the space area obtai�
ned by recursive division of a plane on 4 equal parts.

XZ�indexing. Shortcoming of Z�indexing at work
with not point (extended) objects is that one object is
correlated with some Peano numbers, i.e., some inde�
xes. Presence of the relation « one to many « results to
that indexes are kept separately from the table to be in�
dexed. It leads to occurrence of additional connection
on the index table at performance of inquiry, and the da�
ta in the basic table cannot be clustered on a Z�index.

The method of XZ�indexing described in [8], modifi�
es a classical method in such a way that one object is cor�
responded only by one value of the Peano code. However
the approximation error of in such method is higher.

Quadrant splitting of an area. At indexing of objects
with the Z�indexing method, it is necessary to present
the object as a set of quadrants which are located in a DB
as Peano codes. The example of splitting of rectangular
area on quadrants is shown on Fig. 1. The number of qu�

UDC 004.657

INDEXING OF THE SPACE DATA IN THE CSDB MICROSOFT SQL SERVER 2000

N.A. Shestakov

Tomsk Polytechnic University

E�mail: ShestakovNA@ce.cctpu.edu.ru

2 schemes of space indexing are realized in environment of CSDB Microsoft SQL Server 2000. The experimental research of the realized
methods for window inquiries is carried out. Comparison of the realized methods with available in the standard means of indexing be�
ing in the given CSDB has been carried out. To find the quadrant splitting in methods Z�and XZ�indexing the heuristic algorithm which
gives a smaller error of approximation in comparison with standard algorithm is proposed.



adrants depends on the resolution of a base grid (the size
of minimal quadrant, defined by the maximal depth of
quadro�tree) and the size of the area to be splitted.

At performance of window inquiry, the area of
inquiry also is broken on quadrants (for Z�and XZ�in�
dexing methods). The range of the Peano codes corres�
ponds to everyone quadrant. The inquiry is sampling of
all objects, which Peano codes fall in these ranges.

Accuracy of representation of object that will be the
better, the more is number of quadrants. It can be esti�
mated quantitatively by the approximation error. We
shall understand as a approximation error σ a ratio of
the total area of quadrants ΣSq to the area of the figure
to be splitted S minus 1.

σ=ΣSq/S–1=(ΣSq–S)/S.

As a rule, there is some reasonable restriction on
number of quadrants. At construction of object indexes
it is some units, at construction of ranges in window
inquiry – hundreds. At this the problem arises to obtain
such splitting which would give the least error at the gi�
ven restriction on number of quadrants. Such splitting
we shall consider as optimal.

Algorithm of splitting on quadrants. The algorithm of
recursive splitting with restriction of recursion depth is
described In [8]. It does not give optimum splitting, but,
at least, is better, than simply to split up to achievement of
the maximal depth of quadro�tree. The idea of algorithm
is to split recursively space up to achievement of some cer�
tain recursion depth which is calculated a priori, coming
from restriction on allowable number of quadrants Nmax.

As restriction of recursion depth allows only rough�
ly to come nearer to border of number of quadrants Nmax

at splitting the result of work of algorithm usually is not
optimal.

The author proposed algorithm in which process of
splitting is adjusted by some heuristics which defines
which quadrantin the current splitting it is necessary to
split in the following turn. It too does not find optimal
splitting, but the result is enough close to optimum.

Input parameters of the algorithm are: Nmax – is ma�
ximal allowable number of quadrants in splitting; Rect –
is rectangular area which is necessary to split on quad�
rants.

Output parameter of the algorithm is qlist – the list
of quadrants.

The step�by�step description of its work is given be�
low.

Step 1. To establish for quadrant q the maximal size
equal to the size of all the space.

Step 2. To place q in the list qlist.

Step 3. If the length of the list qlist is equal Nmax to end
algorithm.

Step 4. If there is no quadrants in the list qlist, which
can be splitting without overflow of the list qlist
to end algorithm.

Step 5. To choose from the list qlist quadrant q with
the maximal value of heuristics.

Step 6. To split q on subquadrants and to place obtai�
ned subquadrants which cross the area Rect, in
the list qlist.

Step 7. To pass to the Step 3.

The algorithm is greedy since each iteration impro�
ves the current splitting and approaches it to final result.

Fig. 1. Optimal splitting, Nmax=10

Sense of counted up heuristics is the area of the spa�
ce to be reduced at splitting of quadrant, related to
number of quadrants on which splitting will increase.

The matter is that not each splitting results in reduc�
tion of the approximation area. For example, quadrant 1
(fig. 1) after splitting on 4 subquadrants, will not result in
improvement of the current splitting as each of these
subquadrants will cross still initial area. However at the
further splitting empty quadrants will appear already
which will be removed from the list and begin to reduce
the approximation error. Quadrant 2 at splitting at once
will give reduction of an error though the area of empty
space in it is less, than in the quadrant 1. Quadrant 3 at
the first splitting also will lead to reduction of the appro�
ximation area though this reduction is insignificant. Qu�
adrant 1 is potentially more favourable for splitting, than
the quadrant 3 though it is required more splittings. On�
ly it is necessary to check up, is it possible to make such
splitting taking into account restriction Nmax.

Therefore the number of subquadrants Nsuc on which
it is necessary to split the initial quadrant up to achieve�
ment of the first «successful» splitting (resulting in re�
duction of an error) is calculated for each quadrant.
This reduction dS (in absolute units of the area) also is
calculated. Next квадрант for splitting is chosen with
the maximal value of heuristics E=dS/(Nsuc–1). But at
this the necessary condition is, that Nsuc would not exce�
ed a difference between the current quantity of quad�
rants and maximal one.

If some quadrants have identical value E the choice
occurs according to the maximal area of empty space of
the quadrant:

Sempty=Sq–S(q∩Rect),

Where Sq – is the quadrant area, S(q∩Rect) – is the
area of crossing of the quadrant and the area to splitted.

Bulletin of the Томsк Pоlyтеchnic University. 2006. V. 309. № 4

146



Technical sciences

147

It was established, that for квадрантов which are cros�
sed by border of area vertically (as quadrants 2 and 3 on
Fig. 1) or horizontally (as quadrant1), value Nsuc depends
on size of a gap between area border and external border of
the quadrant (the gap corresponds to empty space of the
quadrant). If to normalize the quadrant side on unit and to
accept d as the gap size it is possible to obtain, that

Nsuc=2×2lb(d)–2,

where lb (d) is the position of the first individual bit in
the binary presentation of d (for example, lb (0.1101)
=1; lb (0.001) =3). At this

dS=Sq/2lb.

where Sq is the quadrant area.

For angular quadrants it is possible to take as d the
maximal gap size. It can, in principle, lead to not abso�
lutely exact calculation of heuristics, but has no effect
for quality of work of algorithm as a whole.

Calculating complexity of heuristic function is low,
as only operations of addition/subtraction and bit shifts
are used at calculation.

For different values Nmax the average approximation
error s, obtaining as the result of work of algorithms was
calculated. Value Nmax was taken from two ranges: from
4 up to 8 (the characteristic values at building of the
Z�indexes of objects) and from 400 up to 800 (the cha�
racteristic values at splitting of inquiry area to form in�
tervals of the Z�values). Results are given in the table.

Table. The approximation error s for recursive and heuristic
algorithms

The heuristic algorithm gives the smaller (from 1,5
up to 3 times) approximation error. This difference is
essential for small values of Nmax. When restriction on
number of quadrants is enough great, this difference is
insignificant, as the value of error itself is small.

As to velocity of work of algorithms, here advantage
is on the side of the recursive method – its operating ti�
me is asympthotic linear in relation to Nmax. Labour con�
summation of heuristic algorithm work is proportional
to Nmax

2. However, the operating time of both algorithms
for small values of Nmax is negligible in comparison with
time of the SQL inquiry execution.

2. Space indexing in the MS SQL 

Server 2000 environment

Problem of a choice of data model for test system.
The scheme of the data (objective and relational) is de�
fined by specificity of a problem. As to directly space
part various questions concerning representation of the
space information can be appeared before a designer. In

this case at a choice of the scheme it has been solved to
lean on standard OpenGIS Simple Features Specifica�
tions For SQL [9] (further in the text the standard
OpenGIS) though it was not put the purposes of full
conformity to the standard; for the system�prototype to
be created it is not required.

Standard OpenGIS defines various data schemes for
two language SQL environments: SQL92 and SQL92
with Geometry Types. As the last assumes presence of
geometrical types in the language for MS SQL Server it
does not pass. For SQL92 two possible variants of reali�
zation: with storage of geometrical figure elements and
with use so�called «the large binary objects» (BLOB) for
storage of geometry are determined. The author chose
the second way as it does not limit the geometrical
description of figures by primitives, defined by the stan�
dard and, on some supervision, is used more often.

Features of realization in the MS SQL Server 2000
environment. Geometrical objects are presented as rec�
tangulars (MBR) which are described in the table by a
set of four attributes: x0, x1, y0, y1. To store additional in�
formation on geometry of objects the attribute data, ha�
ving type image which is BLOB type in realization of
MS SQL Server is foreseen.

For the XZ�indexing method the basic table is ex�
panded with additional attribute – value of a XZ�index
(type int – 4 bites). In the Z�indexing method indexes
are stored in the separate table connected with the basic
on an external key.

No attributive information on objects it was stored
in experimental DB. It is supposed, that the space and
attributive information are divide on different tables,
and here we are interested only with a space component.

Method of independent indexes. The given method
does not use space indexing. The sense of its use consists
in estimation as far as standard means can be worse or
better than those which are thought out in exchange.

In the basic table non�cluster indexes (independent�
ly on every columns) are built on coordinates MBR.
The inquiry in this case represents simple sample on
crossing of four ranges. Simplicity of this way is obvio�
us. First, it is not required to build own indexes, second,
the data are chosen by the simplest inquiry.

Method of Z�indexing. The input information for al�
gorithm are coordinates of the inquiry window. On out�
put the set of the objects corresponding to the initial
window is formed. A sequence of actions is:

Step 1. To transform the inquiry window to the set of
Z�value intervals:

1.1. To split the window on quadrants.

1.2. To transform every quadrant to the correspon�
ding interval.

1.3. To execute merge of close intervals from the
obtained set.

Step 2. To form and to make SQL�inquiry on the set
of intervals.

Step 3. In addition to filter the obtained set of objects,
using the information on MBR of objects.

Nmax
Algorithm

Recursive Heuristic

4 3,5 2,4

6 2,8 1,2

8 2,7 0,9

400 0,035 0,019

600 0,024 0,012

800 0,015 0,009



Sampling identifiers of objects from the table kee�
ping Z�indexes (ordered by cluster index) is carried out
on the step 2, then connection of this list on the basic
table with objects is made.

Method of XZ�indexing. The general algorithm co�
incides with that is used in a method of Z�indexing, on�
ly the algorithm of building of Z�values and intervals is
modified. Also on the step 2 connection in inquiry is not
carried out as XZ�indexes are kept in the basic table,
and on a field of the XZ�index is built the cluster index.

3. Numerical experiment

Conditions of realization of experiment. To carry out
experiments with the development environment Bor�
land Delphi 7 it was written the test client appendix.
The server part worked under control of SCDB MS
SQL Server 2000 (MSDE), started on a uniprocessor
computer (Athlon XP 2400) with 512 Mb of memory
and IDE hard disk with volume 80 Gb and cash 8 Mb.
The following characteristics were used as the basic cri�
teria of an overall performance of window inquiries:

• time of execution of inquiry (execution time);

• quantity of accesses to a disk (disk accesses).

Measurements of time were made on the client side.
To define quantity of disk operations values of global va�
riables @@ TOTAL_READ and @@ TOTAL_WRITE
were measured.

Experiment was carried out on 9 sets of the artifi�
cially generated data distributed evenly on bidimensio�
nal square area. Quantity of objects in the sets was vari�

ed: 200 thousand, 600 thousand, 1 million; size of ob�
jects was varied, too: point, normal (5,8.10–7 of res�
earched space areas) and big (5,8.10–6 of space area).
Possible combinations of quantity of objects and the si�
ze give 9 variants of test data sets.

Measurement of time and quantity of disk operations
for window inquiry with use of each of three realized meth�
ods was carried out on each data set. The window of inqui�
ry accepted values 0,01, 0,04, 0,2, 1,0 and 5,0 % from the
area of all the space (all the space is defined by a possible
range of coordinates, in this case, from – 32768 up to
32767 for used type shortint, that is a grid 65536×65536).
Objects are distributed evenly in space. Thus, the size of a
window actually characterizes final selectivity of inquiry.

All values of criterial parameters are obtained by
averaging on 25 measurements. The standard deviation
from average value in a series was 10...15 % for values of
time and less than 5 % for number of disk operations.

Results of experiment and their discussion. Results of
experiment for objects of the normal size are given on
fig. 2 diagrams for time of performance of inquiries are
presented At the left (Fig. 2, a, b, c), for number of disk
operations – on the right (Fig. 2, g, d, е).

By results of experiment it is possible to make the
following notes:

1. It is obvious, that with increase of database volume
the operating time of all inquiries is increased. At
this time in the independent index method and in
the Z�indexing method grows faster, than in the
XZ�indexing method.

Bulletin of the Томsк Pоlyтеchnic University. 2006. V. 309. № 4

148

Fig. 2. Results of experiment (at the left – measurements of time, on the right – measurements of number of disk operations)

). 200 .

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
). 200 .

0

50

100

150

200

250

300

350

400

). 600 .

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

,

). 600 .

0
100
200
300
400
500
600
700
800
900

1000

). 1 .

0

1

2

3

4

5

6

7

8

0.01% 0.04% 0.20% 1.00% 5.00%

. XZ- Z-

). 1 .

0

200

400

600

800

1000

1200

1400

0.01% 0.04% 0.20% 1.00% 5.00%

. XZ- Z-



Technical sciences

149

2. Efficiency of inquiry in the independent index
method does not depend on the size of a inquiry
window (in the range to be researched). Methods Z�
and XZ�indexing are much more sensitive to the
window size.

3. It is possible to notice not absolutely clear at first
sight behaviour of the Z�indexing method, when
number of accesses to the disk for the certain value
of the window size is too high (as on fig. 2, d and e)
for value of the window size of 0,04 %). The reason
of such jump is that at connection of tables optimi�
zator chooses the unsuccessful inquiring plan. If di�
rectly to specify to optimizator, what type of the plan
to use, it results in reduction of connection efficien�
cy for the small sizes of trhe window.

4. The size of kept objects does not render appreciable
influence for the period of performance of inquiries
(therefore results only for objects of the normal size
are given). Exception is the Z�indexing method
which works little bit faster for point objects. It spe�
aks that point objects are not splitted at building of
an index, and the table with Z�indexes becomes of
the smaller size.

5. At identical values of the disk operations, the operating
time of the independent index method is more, than at
other methods. Probably, it speaks that this method us�
es more resources of the processor, than others.

Conclusions on experiment. It is possible to tell, that
at certain conditions (enough good selectivity and the
sufficiently plenty of objects) use of special way for in�

dexing of the spatce data can give enough appreciable
gain of productivity if to use the XZ�indexing method.
The Z�indexing method of has proved to be unsatisfac�
torily even in comparison with use of independent inde�
xes (excepting the case, when selectivity of inquiry is ve�
ry small – 0,01 %). As a whole, to increase velocity of
performance of window inquiries, it is possible to re�
commend to use XZ�indexing for tables which contain
more than 600 thousand records at sampling on a win�
dow with the size less than 1 %.

Conclusion

For the test database containing space objects and
working under management of SCDB MS SQL Server
2000, methods of space indexing (Z�indexing and
XZ�indexing) were realized. Testing productivity of in�
dexing was carried out in comparison with standard me�
ans being available in SCDB (the method of indepen�
dent indexes). Results have shown, that the
XZ�indexing method can accelerate essentially work of
window inquiries at certain conditions (for example, for
inquiry selectivity less than 1 % and quantity of objects
more than 600 thousand – more than in 3 times).
However at enough large size of the inquiry window or
on small volumes of the data the XZ�indexing method
can work even more slowly, than standard.

The proposed heuristic algorithm of quadrant split�
tings provides the smaller approximation error, than
standard algorithm at the same given restriction on
number of quadrants in splitting.

Literature

1. Francica J. A Spatial Database Technology Update with Dr. Ignacio
Guerrero, Intergraph (interview) // Directions Magazine. – 2003. –
№ 1(Jan), http://www.directionsmag.com/

2. Microsoft SQL Server: Future Plans for Supporting Spatial Data //
Directions Magazine. – 2003. – № 10. http://www.direction�
smag.com/

3. Gaede V., Gunter O. Multidimensional Access Methods // ACM
Comput. Surv. – 1998. – V. 30. – № 2 (June). – P. 170–231.

4. Guting R.H. An Introduction to Spatial Database Systems // VLDB
Journal. – 1994. – V. 3. – № 4. – P. 297�308.

5. Papadias D., Theodoridis T. Spatial Relations, Minimum Bounding
Rectangles and Spatial Data Structures // Technical Report KDB�
SLAB�TR�94�04, http://www.cs.ust.hk/faculty/dimitris/PA�
PERS/ijgis97.pdf

6. Guttman A. R�trees: A dynamic index structure for spatial searching
// Proc. of the ACM SIGMOD Intern. Conf. on Management of
Data, 1984. – Р. 47–54.

7. Faloutsos C., Kamel I. Hilbert R�Tree: An Improved R�Tree Using
Fractals // Department of CS, University of Maryland, Technical
Research Report TR�93�19, https://drum.umd.edu/dspace/han�
dle/1903/581

8. Bohm C., Klump G., Kriegel H.�P. XZ�Ordering: A Space – Filling
Curve for Objects with Spatial Extension // University of Munich,
Computer Science Institute, http://www.dbs.informatik.uni�mu�
enchen.de/Publikationen/Papers/SSD�XZ�Order.final.pdf

9. OpenGIS Simple Features Specification For SQL Rev. 1.1 // Open
GIS Consortium, 1999. http://portal.opengeospatial.org/files/?arti�
fact_id=829




