Так как электрическое поле имеет направление, по этому направлению происходит заряд (ионизация) молекул газа, т.е. происходит образование химически активных веществ, которые инициируют цепную химическую реакцию. При любых соотношениях значений частоты и напряжения, взятых из этих диапазонов, обеспечивается устойчивое протекание процесса конверсии газовой среды, без разрушения реактора конверсии и газа (образование золы). Выход продукта регулируется путем установки определенных соотношений напряженности электрического поля и частоты.

Для измерения тока и напряжения использовался амперметр (10) и вольтметр (11). Продукты конверсии охлаждались и конденсировались в холодильнике (12), конденсат собирался в сборнике (13). Оставшийся газ после реактора поступал на вторую стадию.

Из полученных экспериментальных данных установлено, что оптимальный режим работы является при мощности до 50 Вт и времени пребывания газа в реакционной зоне 0,1 с. При увеличении мощности источника происходит уменьшение массы выхода жидкости и начинают преобладать паразитные реакции с образованием смол. Увеличение времени пребывания газа в реакционной зоне ведет к уменьшению массы выхода жидкости, но изменение выхода

Таз на 2 ступень

1 — баллон с газом; 2 — расходомер; 3 — вентиль; 4 — смеситель; 5 — штуцер; 6 — корпус реактора конверсии (диэлектрик); 7 — анод; 8 — катод; 9 — импульсный источник питания; 10 — амперметр; 11 — вольтметр; 12 — холодильник; 13 — сборник продуктов конверсии.

Рис. 1. Схема экспериментальной установки продуктов C_s - C_o не значительны.

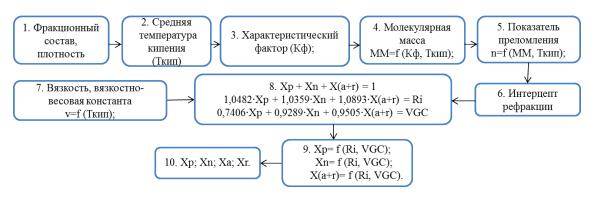
В докладе будет рассмотрен механизм процесса каталитической конверсии метана в условиях холодной плазмы, приведены зависимости выхода углеводородов от мощности и времени пребывания газа в реакционной зоне, а также показаны результаты хроматографического анализа проб после конверсии метана.

Список литературы

1. Liu C.-J., Xu G.-H., Wang T. // Fuel Processing Tech., 1999. – Vol.58. – № 119.

2. S.L. Yao, F. Ouyang, A. Nakayama et al. // Energy Fuels., 2000.– Vol.14.– P.910–914.

ПРОГНОЗИРОВАНИЕ ГРУППОВОГО СОСТАВА ВАКУУМНОГО ДИСТИЛЛЯТА НА ОСНОВЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ О ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВАХ


Т.А. Шафран, Г.Ю. Назарова, К.Б. Шалжанова, М. Алматкызы Научный руководитель – д.т.н., профессор Е.Н. Ивашкина

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, silko@tpu.ru

В данной работе предложена методика для расчёта группового состава вакуумного дистиллята из Западно-Сибирской нефти в зависимости от физико-химических свойств — фракционного состава, плотности и вязкости. Этапы расчета выбраны на основании методики API [1]. При этом эмпирические формулы определения мо-

лекулярной массы и показателя преломления вакуумного дистиллята по методике API не учитывают степень парафинистости фракции.

В данной работе молекулярная масса и показатель преломления вакуумного дистиллята рассчитан с учетом характеристического фактора вакуумного дистиллята, характеризующего

Рис. 1. Блок схема расчёта группового состава сырья каталитического крекинга: x_p , x_n , x_{a+r} – мольные долевые концентрации парафиновых, нафтеновых и смолисто-ароматических углеводородов

Таблица 1. Сравнение рассчитанных значений концентраций групп углеводородов с лабораторными исследованиями

Дата	Сравнение значений	Групповой состав сырья, % мас.			
		Xp	Xn	Xa	Xr
06.11.2013	Расчетные значения	43,74	16,64	35,75	3,86
	Лабораторные значения	42,82	19,48	33,90	3,80
	Абсолютная погрешность	0,92	2,84	1,85	0,06
17.10.2012	Расчетные значения	47,01	25,13	25,12	2,72
	Лабораторные значения	47,90	21,80	28,20	2,10
	Абсолютная погрешность	0,89	3,33	3,05	0,62
22.04.2015	Расчетные значения	46,84	21,36	28,70	3,10
	Лабораторные значения	45,16	20,54	31,40	2,90
	Абсолютная погрешность	1,68	0,82	2,7	0,2

степень парафинистости фракции, установлена зависимость вязкости вакуумного дистиллята от средне-объемной температуры кипения фракции, а также введено разделение группы ароматических углеводородов на ароматику и смолы. Этапы расчета группового состава вакуумного дистиллята по предложенной методике представлены на рисунке 1.

Для определения мольной долевой концентрации парафиновых (x_p) , нафтеновых (x_n) , смолисто-ароматических углеводородов (x_{a+r}) была составлена система трех уравнений с тремя неизвестными, в которой 1,0482; 1,0359; 1,0893 — средний интерцепт рефракции для парафиновых, нафтеновых и смолисто-ароматических углеводородов и 0,7406; 0,9289; 0,9505 — вязкостно-весовая константа для вышеуказанных углеводородов соответственно. Далее система

уравнений была решена относительно x_p , x_n и x_{a+r} по методу Крамера и выполнен пересчет из мольных долей в массовые доли.

Результаты по сопоставлению группового состававакуумного дистиллята каталитического крекинга, полученного расчетным путем с лабораторными результатами, выполненными на приборе «ГРАДИЕНТ-М» представлены в таблице 1.

Абсолютная погрешность между расчетными концентрациями групп углеводородов вакуумного дистиллята и экспериментальными составила менее 4%, следовательно, данный подход может быть использован для определения содержания различных групп углеводородов на основании физико-химических свойств вакуумного дистиллята.

Список литературы

1. Задегбейджи Р. Каталитический крекинг в псевдоожиженном слое катализатора. Справочник по эксплуатации, проектирова-

нию и оптимизации установок ККФ: пер. с англ. яз. 3-го изд; под ред. О.Ф. Глаголева.— СПб.:ЦОП «Профессия», 2014.— 384с.