300°C).

Наше исследование включало в себя следующие этапы:

- 1. Удаление аренов жидкостно-адсорбционной хроматографией. В основу процесса положена различная сорбируемость компонентов смеси. Арены обладают большей адсорбционной способностью, по сравнению с алканами и циклоалканами. Это свойство ароматических углеводородов и положено в основу адсорбционного метода их выделения.
- 2. Определение анилиновой точки деароматизированной фракции. При смешении дизельной фракции с анилином при комнатной температуре полного растворения нефтепродукта не происходило, образовалось два слоя. Нагревая эту смесь при постоянном помешивании до определенной температуры, произошло полное взаимное растворение анилина и нефтепродукта, слои исчезли, жидкость стала однородной. После исчезновения границы раздела достали пробирку из бани и замерили температуру. Температуру, соответствующую полному взаимному растворению анилина и нефтепродукта, называют анилиновой точкой или критической температурой растворения данного нефтепродукта в анилине. В данном опыте анилиновая точка составила 82°C. После того, как раствор был вынут из пробирки, он потемнел и помутнел, а затем снова образовалась граница раздела. При этом температура составила 75°C.

Список литературы

- 1. ГОСТ Р 52368-2005 (ЕН 590:2009). Топливо дизельное ЕВРО. Технические условия. [26.02.15].
- 2. Определение группового и структурно-группового составов нефтяных фракций: мето-

- 3. Определение максимальной анилиновой точки исходной дизельной фракции. В данной работе использовался метод анилиновых точек. При увеличении количества анилина температура полного растворения сначала повышается и при некотором соотношении фракции и анилина достигает максимума, после чего при дальнейшем увеличении количества анилина начинает падать. Максимальную температуру полного растворения принимают за максимальную анилиновую точку. Нами определена максимальная температура растворения фракции в анилине (максимальная анилиновая точка) при 1,2 мл анилина. Она равна 63 °C.
- 4. Расчет количества парафиновых, нафтеновых и ароматических углеводородов. Обработка результатов.

Используя методику расчетов [1], произвели расчеты, в ходе которых определили, что массовая доля аренов в дизельной фракции составила 21,48 % мас.; массовая доля алканов — 7,87 % мас.; циклоалканов — 70,67 % мас. Значит, в данной фракции преобладают циклоалканы.

Может ли данное дизельное топливо использоваться в двигателе внутреннего сгорания? По ГОСТу [1] массовая доля ароматических углеводородов не должна превышать 8 % мас. Проанализировав полученные результаты, можно сделать вывод, что данное дизельное топливо не подходит для использования его в двигателях внутреннего сгорания.

дические указания к лабораторной работе для студентов химико-технологического факультета / сост. О.С. Сухинина, А.И. Левашова.— Томск: издательство ТПУ, 2010.—22с.

ОПРЕДЕЛЕНИЕ НИТРАТОВ В ОВОЩАХ И ФРУКТАХ

С.Е. Патласова¹

Научный руководитель – ассистент Е.В. Петрова²

¹Муниципальное бюджетное образовательное учреждение лицей при ТПУ 634028, Россия, г. Томск, ул. А. Иванова 4

²Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30

Свежие фрукты и овощи помимо пользы для здоровья могут таить в себе немалую опасность. Виной тому — различные химикаты, поступающие в растения вместе с удобрениями, вносимы-

ми в почву при их выращивании. Накопление нитратов зависит от биологических особенностей растения, формы и способа внесения удобрений, соблюдения сроков подкормки и сбора овощей.

Для нашего организма нитраты сами по себе безвредны. Опасны, прежде всего, не нитраты, а их метаболиты - нитриты, которые образовываются при хранении, кулинарной обработке и собственно пищеварении. Нитриты блокируют насыщение кислородом клеток. Связывается гемоглобин, возрастает содержание холестерина и молочной кислоты.

Цель работы: определить содержание нитратов в овощах и фруктах и сравнить его с нормами ПДК, согласно постановлению Главного государственного санитарного врача РФ от 14 ноября 2001 г. №36 «О ведение в действие санитарных правил».

Задачи:

- изучить литературу, содержащую информацию о нитратах
- подготовить ряд овощей и фруктов для эксперимента
- С помощью ионометрического метода, экспериментально установить содержание нитратов в наиболее популярных овощах и фруктах
- Сравнить экспериментально полученные данные с нормами ПДК и, в зависимости от результатов, сделать выводы

В качестве объектов исследования брали овощи и фрукты, купленные в магазинах города Томска. Определить по внешнему виду содержание нитратов в овощах и фруктах трудно или вообще невозможно, поэтому в данной работе определение содержания нитратов проводили двумя способами: первый способ состоит в ионометрическом определении нитратов с помощью нитрат селективного электрода, в качестве второго метода был выбран метод полуколичественного определения нитратов с помощью дифениламина, основанный на визуальной оценке окрашенных соединений, образующихся при

взаимодействии нитратов с дифениламином.

Методика эксперимента

1. Ионометрический метод

Для определения нитратов ионометрическим методом на технических весах взвешивают 10 грамм исследуемых овощей или фруктов, затем навеску гомогенизируют, переносят в мерную колбу объемом 50 мл и доводят до метки дистиллированной водой. Полученную смесь тщательно перемешивают в течение 5—7 минут и фильтруют. Перед проведением анализа проводят калибровку ион селективного электрода. Нитратный электрод калибруется по растворам со следующими концентрациями нитратов: 0,0001 M, 0,001 M, 0,01 M и 0,1 М. После построения градуировочного графика проводят определение содержания нитратов в исследуемых растворах овощей и фруктов.

2. Определение нитритов с помощью дифениламина.

На поверхность свежего среза (овоща или фрукта) наносят несколько кристалликов дифениламина и смачивают их двумя каплями концентрированной серной кислоты. Затем, по окраске среза можно судить о количестве нитритов в исследуемой культуре. Интенсивное синее окрашивание среза свидетельствует о наличии большого количества нитритов, розовое — на небольшое их содержание и отсутствие окрашивания — на отсутствие нитритов или на их очень небольшое содержание.

Результаты исследований представлены в таблице 1.

Изучив литературу по данной теме, подготовили растворы ряда овощей и фруктов и экспериментально определили содержание нитратов с помощью нитратного электрода. Далее, с

Таблица 1. Содержание нитратов в овощах и фруктах, определенное с помощью нитрат селективного электрода и реакцией с дифениламином

Исследуемый овош/фрукт	Ионометрический метод (мг/кг)	С помощью ди- фениламина	ПДК (мг/кг)
Яблоко «Семеренко» (г. Краснодар)	7,95	Нет окрашивания	60
Капуста	519,5	Синее окрашивание	500
Яблоко «Грэнни» (Китай)	29,55	Нет окрашивания	60
Морковь (г. Павлодар)	222	Розовое окрашивание	250
Свекла (г. Барнаул)	686,3	Синее окрашивание	1400
Помидор (Китай)	50,07	Нет окрашивания	150/300
Помидор (Узбекистан)	99,47	Нет окрашивания	150/300
Хурма (Азербайджан)	93,35	Нет окрашивания	60

помощью дифениламина, определили наличие (отсутствие) нитритов в исследуемых образцах. Результаты опытов можно увидеть в таблице 1.

В ходе проведенных опытов было установлено, что наиболее «опасными» являются капуста белокочанная, хурма и морковь. Значит, употреблять их в пищу не желательно. Для уменьшения содержания нитратов можно сделать:

1) зеленые овощи (петрушка, укроп и т.д.) необходимо поставить в воду на прямой солнеч-

ный свет:

- 2) свеклу, кабачки, капусту, тыкву необходимо порезать мелкими кубиками и 2–3 раза залить теплой водой, выдерживая их по 5–10 минут;
- 3) овощи и фрукты термически обрабатывать (отваривать), также снижает количество содержащихся нитратов квашение, соление, маринование;
- 4) сушка, приготовление пюре, сока повышают содержания нитратов.

МЕДИЦИНСКИЕ ПРЕПАРАТЫ В КАЧЕСТВЕ ХИМИЧЕСКИХ РЕАКТИВОВ

А.А. Петрунина Научный руководитель – учитель химии Т.А. Дубок

Муниципальное автономное общеобразовательное учреждение «Итатская средняя общеобразовательная школа» Томского района 634542, Россия, Томская обл., Томский район, с. Томское, ул. Маяковского 2, tomschool@mail.ru

Однажды я заглянула в домашнюю аптечку, в ней находились разные лекарства. Так как мне нравится химия, я подумала, можно ли с ними сделать опыты? Так возникла идея исследования.

Объект исследования: некоторые медицинские препараты.

Предмет исследования: химические реакции с некоторыми медицинскими препаратами.

Цель исследования: подобрать и провести серию опытов с доступными медицинскими препаратами.

Гипотеза исследования: в домашней аптечке можно найти медицинские препараты, которые можно использовать как химические реактивы.

Задачи исследования:

- 1. Изучить информационные источники по теме исследования.
- 2. Провести эксперименты с медицинскими препаратами.
- 3. Провести анкетирование школьников с целью выяснения мнения о возможном использовании медицинских препаратов как химических реактивах.

Методы исследования

- 1. Метод анализа и синтеза литературы по теме исследования.
- 2. Теоретический метод познания: сравнение, обобщение, умозаключение.
 - 3. Эмпирические методы: проведение экс-

перимента, наблюдение за происходящими явлениями, прогнозирование.

Исследование проходило в Итатской школе и дома у исследователя, проведено около 20 опытов.

В нашей домашней аптечке не такое многообразие лекарств, как рекомендуют медицинские работники. Я рассмотрела разные препараты, которые были у нас в аптечке, и остановила свой выбор лишь на самых знакомых и часто применяющихся. Провела с ними опыты.

Перманганат калия является очень сильным окислителем и используется в медицине как кровоостанавливающее, дезинфицирующее и дезодорирующее средство. С ним были проведены следующие опыты: взаимодействие перманганата калия с сахаром; взаимодействие со спиртом; реакцию с серной кислотой.

Действие раствора иода на крахмал. Я провела интересный опыт под названием «управление цветом». В пробирке крахмальный клейсте с иодом дал синее окрашивание, при нагревании окраска пропала, при охлаждении пробирки – вновь появилась [3].

Опыты с бриллиантовым зеленым. В пробирку наливала 1 мл раствора бриллиантового зеленого и добавила раствора соляной кислоты HCl. Окраска постепенно стала оранжевой.

Опыты с пероксидом водорода. К пероксиду водорода добавила оксид марганца, наблюдалось бурное выделение газа, я внесла тлеющую