ТЕХНОЛОГИЯ АКТИВАЦИИ ПРОДУКТОВ СЖИГАНИЯ РИСОВОЙ ШЕЛУХИ ВЬЕТНАМА

H.M. Хиеу¹

Научные руководители – д.т.н., профессор В.В. Коробочкин¹; к.т.н., профессор Н.В. Ту²

¹Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, kqhak@yandex.ru

> ²Ханойский университет науки и технологии Вьетнам, г. Ханой, 1 Dai Co Viet, tunguyenvan@hust.edu.vn

Утилизация рисовой шелухи с получением активированного угля имеет большое значение в защите окружающей среды и так же в производстве активных углей, где поиск новых альтернативных источников сырья является актуальной проблемой. Получение активированного угля из рисовой шелухи в основном состоит из 2-х этапов: карбонизация и активация. Карбонизация проводится с целью повышения содержания углерода и создания предварительной пористой структуры. Активацию проводят с целью развития пористой структуры и придания активированным углям необходимых свойств. В работе [1] были определены оптимальные условия процесса карбонизации. В этой работе фокусируется определение оптимальных условий процесса активации.

Для оценки эффективности процесса активации были использованы физические и химические методы активации, при физической активации, в качестве активаторов используют водяной пар или углекислый газ, которые реагируют с углеродом по следующим реакциям

$$CO_2 + C = 2CO \tag{1}$$

$$H_2O + 2C = 2CO + H_2$$
 (2)

В ходе экспериментов было исследовано влияние таких параметров полученных углей как температура, расход газа (пара) и время активации на значения удельной поверхности. Результаты показали, что обработка при 850°C позволяет получить активированный уголь с более высокими значениями удельной поверхности. Оптимальное время активация – 1 час. Активация с использованием паров воды дает результаты лучше, чем активация углекислым газом. Это может объясняться чем, что из-за особенностей геометрических структур молекулы углекислого газа имеют тенденцию реагировать с углеродом на поверхности, в то время, как молекулы воды имеют тенденцию реагировать с углеродом в глубине матрицы.

Химическая активация была проведена с использованием Na_2CO_3 , K_2CO_3 в качестве актива-

торов, при которой могут протекать следующие реакции:

$$M_2CO_3 \rightarrow M_2O + CO_2$$
 (3)

$$M_2O + C \rightarrow 2M + CO$$
 (4)

$$C + CO_2 \rightarrow 2CO$$
 (5)

$$2C + M_2CO_3 \rightarrow 2M + 3CO \tag{6}$$

где М — натрий или калий. Реакция (5) играет роль регулятора в формировании и развитии пористой структуры. В зависимости от парциальных давлений углекислого газа при разложении солей карбонатов, реакция между углекислым газом и углеродом может протекать на поверхности или в глубине углеродной матрицы. Это давление изменяется при варьировании температуры, соотношения соль/уголь и вида солей. Значение парциального давления диоксида углерода при разложении карбонатов показано в таблице 1.

Таблица 1. Зависимости парциального давления диоксида углерода от температуры прокаливания, мм рт. ст. [2]

Соль	T=850°C	T=900°C
Na ₂ CO ₃	8	12–15
K,CO,	0,1-0,5	1,8

Для определения оптимальных условий процесса активация была проведена серия экспериментов, в ходе которой было исследовано влияние таких параметров на значение удельной поверхности полученных углей, как температура, время, соотношение соль/уголь. Результаты экспериментов показали, что оптимальные температуры активации составляли 850°C и 900°C для карбонатов натрия и калия, что соответствует температурам начала разложения солей. Оптимальное соотношение соль/угля составило 1:13 и 1:10 для карбоната натрия и калия, соответственно. Время активации 1 и 2 часа для карбонатов натрия и калия, соответственно. Активация с использованием карбоната калия дает результаты лучше, чем активация с карбонатом натрия.

Список литературы

- 1. Данг Нян Тхонг, Нгуен Мань Хиеу, Коробочкин В.В Анализ процесса сжигания сырья в производстве активированного угля // Научно-технический и производственный жур-
- нал «Наноинженерия», 2014.– №11.
- 2. Nguyễn Đức Vận, Hóa học vô cơ tập 2, Nhà xuất bản khoa học và kỹ thuật Hà Nôi, năm 2001.

ПОЛУЧЕНИЕ КОРДИЕРИТСОДЕРЖАЩЕГО МАТЕРИАЛА ИЗ ГЛИНОСЕРПЕНТИНИТОВЫХ ШИХТ

А.И. Черепанова

Научный руководитель – д.т.н., профессор Т.А. Хабас

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, ai_cherepanova@mail.ru

Кордиеритсодержащая керамика широко используется в различных сферах науки и техники, отличительным её свойством является низкий коэффициент термического расширения, что и обусловливает высокую термостойкость. Проблемам синтеза кордиерита $(Mg_2Al_4Si_5O_{18})$ постоянно уделяется много внимания. Эффективность синтеза кордиерита зависит от многих факторов, включая свойства примеряемого сырья и введение активирующих добавок. Целью данной работы является изучение влияния состава сырьевой смеси и метода формования за-

готовок на эффективность синтеза

фазы кордиерита.

Исходными материалами для синтеза кордиерита служили отходы обогащения хромитовых руд (основной минерал – серпентинит), глина, глинозем и боксит. В одну из смесей добавили нанопорошок алюминия (HПАI) в качестве алюмосодержащего сырья и активатора спекания. В отличие от обычного порошка металлического алюминия, нанопорошок при нагревании на воздухе дает высокоактивный оксид алюминия и, практически не образуя капель расплава, сразу вступает в реакцию с образованием более сложных соединений, в данном случае образует кордиерит. Составы шихт (В1, В2, В4) были рассчитаны с учетом получения 100% фазы кордиерита (табл. 1). Образцы приготовлены методом полусухого и пластического формования из увлажненных масс (30% воды). Спекались в воздушной среде до температуры 1200°C с выдержкой при конечной температуре 2 часа.

Для изучения состава композиций после обжига применялся рентгенофазовый анализ.

Практически с одинаковой эффективностью, независимо от вида формования, фаза кордиерита формируется в образце В4 с активной добавкой нанопорошка алюминия. В остальных образцах интенсивность рефлексов кордиерита выше на рентгенограммах керамики, полученной пластическим формованием, в результате которого повышается площадь контакта реагирующих частиц. Самое большое отличие наблю-

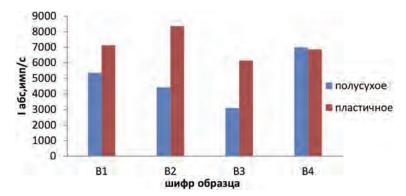


Рис. 1. Сравнительный анализ образования фазы кордиерита при различных видах формования, $T_{off} = 1200 \,^{\circ} C$

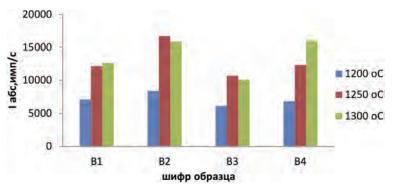


Рис. 2. Влияние термообработки на образование фазы кордиерита при пластичном формовании заготовок