УДК 621.039.516.4

ВЛИЯНИЕ СОСТАВА И ВЫГОРАНИЯ ЯДЕРНОГО ТОПЛИВА НА ДЕЙСТВУЮЩЕЕ ЗНАЧЕНИЕ ПЛОТНОСТИ ПОТОКА ПОВРЕЖДАЮЩИХ НЕЙТРОНОВ В РЕАКТОРЕ ГТ-МГР

А.В. Головацкий, В.Н. Нестеров, И.В. Шаманин

Томский политехнический университет E-mail: nesterov@phtd.tpu.ru

Изложена методика определения действующего значения плотности потока повреждающих нейтронов в реакторе ГТ-МГР. Рассмотрено несколько вариантов стартовой загрузки ядерного топлива при реализации: уран-плутониевого и торий-уранового ядерных топливных циклов. Приведены зависимости плотностей потоков повреждающих нейтронов от времени эксплуатации топливных блоков. Представлено соотношение, связывающее среднее значение выгорания и время эксплуатации топливных блоков. Получены зависимости размножающих характеристик от времени эксплуатации топливного блока. Проведен анализ влияния концентраций делящихся нуклидов на значение плотности потока повреждающих нейтронов.

Ключевые слова:

Высокотемпературный газоохлаждаемый ядерный реактор, реакторный графит, повреждающие нейтроны, критический флюенс, выгорание топлива.

Key words:

High-temperature gas-cooled nuclear reactor, reactor-grade graphite, damaging neutrons, critical flux, nuclear fuel burn-up.

Задача исследования

В настоящее время существует два направления в создании высокотемпературных реакторов, отличающихся концепцией активной зоны. Различие концепций состоит в использовании либо призматических топливных сборок, либо шаровых тепловыделяющих элементов. Обе концепции характеризуются использованием графита и гелия и для них присущ одинаковый материальный состав активной зоны.

Исследования в области работоспособности ядерно-чистого реакторного графита показали, что его срок службы определяется значением критического флюенса повреждающих нейтронов (нейтроны с энергией выше 180 кэВ). В свою очередь значение критического флюенса определяется температурой облучения и плотностью потока сопутствующего гамма-излучения [1]. Значения критического флюенса графита в высокотемпературной области 800...1000 °С уменьшаются в пределах $10^{22}...2 \cdot 10^{21}$ см⁻², соответственно [2]. Это обстоятельство может вызывать снижение ресурса графитовых конструкций реактора ВТГР [3].

Одним из направлений развития ядерной энергетики является увеличение эффективности топливоиспользования, что привело к разработке ядерных топливных циклов нового поколения либо с увеличенной кампанией, либо с большой глубиной выгорания ядерного топлива. Необходимо определить будет ли обеспечена кампания ядерного топлива в ВТГР работоспособностью реакторного графита призматических топливных блоков.

В данной работе представлены результаты исследований особенностей энергетического спектра повреждающих нейтронов в активной зоне высокотемпературного газоохлаждаемого ядерного реактора типа ГТ-МГР и его изменений в течение кампании топлива, что в последующем позволит провести оценки ожидаемого ресурса графита.

Конструкция реактора ГТ-МГР

В расчетах использованы параметры реактора тепловой мощностью 600 МВт с кольцевой активной зоной, разработанный компанией GENERAL ATOMICS. Активная зона в поперечном сечении представляет собой кольцо шестигранной формы, окруженное центральным (цилиндрическим) и боковым (кольцевым) графитовыми отражателями. Топливный блок (рисунок) представляет собой шестигранную графитовую призму со стержневыми топливными элементами, размещенными в отверстиях блока. В блоках имеются отверстия для загрузки выгорающего поглотителя и прохода гелиевого теплоносителя. Активная зона содержит 102 топливные колонны, каждая из которых набрана из 10 топливных блоков. Блоки в колонне фиксируются с помощью штифтов. В работе использовались параметры эксплуатации реактора ГТ-МГР, приведенные в работе [3].

Рисунок. Топливный блок активной зоны реактора ГТ-МГР: 1) канал для теплоносителя; 2) канал для выгорающего поглотителя; 3) топливный канал

Порядок расчета изменений нуклидного состава ядерного топлива и спектра потока нейтронов

Определение спектра потока нейтронов проводилось в 26-групповом приближении. Порядок расчета на каждом шаге интегрирования многогрупповой системы уравнений по времени выглядит следующим образом:

- задаются начальные (стартовые) концентрации делящихся материалов топлива;
- проводится многогрупповой расчет спектра потока нейтронов;
- рассчитывается среднее по делящимся нуклидам значение макроскопического сечения деления топлива в тепловой группе;
- из соотношения, связывающего мощность реактора и плотность потока нейтронов, определяется величина потока нейтронов в тепловой группе:

$$\Phi_m = \frac{Q}{E_f \overline{\Sigma}_f^m V_{A3}},$$

где Q – тепловая мощность реактора; $\overline{\Sigma}_{f}^{m}$ – среднее по всем делящимся нуклидам топлива и по активной зоне макроскопическое сечение деления в тепловой группе; Φ_{m} – поток тепловых нейтронов; V_{A3} – объем активной зоны;

- проводится преобразование нормированного спектра потока нейтронов по известному значению плотности потока нейтронов в тепловой группе;
- 6) определяются значения потоков нейтронов в четырех группах: быстрые повреждающие с *E_n*>0,18 МэВ (с 1 по 7 группу включительно); быстрые не повреждающие (с 8 по 16 группу включительно); резонансные (с 17 по 25 группу включительно) и тепловые нейтроны (26 группа);
- определяются необходимые нейтронно-физические параметры: эффективный коэффициент размножения нейтронов, средние по каждой из четырех групп значения сечения поглощения нейтронов в активной зоне и т. д.;
- определяются значения концентраций делящихся и воспроизводящих нуклидов ядерного топлива на конец шага интегрирования по времени.

Пункты 1—8 повторяются до достижения конца кампании ядерного топлива.

Подготовка многогрупповых констант проводилась с учетом поправки в тепловой группе на среднее значение температуры в активной зоне реактора, равное 1150 К.

Изменение нуклидного состава ядерного топлива

Изменение состава топлива по делящимся и воспроизводящим нуклидам определялось системой связанных конечно-разностных уравнений.

Для U-Pu цикла использовались следующие соотношения:

$$N^{^{235}\text{U}} = N_0^{^{235}\text{U}} \exp(-\Phi_m \sigma_a^{^{235}\text{U}} \Delta t);$$

$$\begin{split} N^{^{239}\,\mathrm{Pu}} &= N_{0}^{^{239}\,\mathrm{Pu}} + \begin{pmatrix} \Phi_{m}\sigma_{c}^{^{238}\,\mathrm{U}}N_{0}^{^{238}\,\mathrm{U}} + \Phi_{p}I_{c}^{^{238}\,\mathrm{U}}N_{0}^{^{239}\,\mathrm{Pu}} - \\ -\Phi_{m}\sigma_{a}^{^{239}\,\mathrm{Pu}}N_{0}^{^{239}\,\mathrm{Pu}} - \Phi_{p}I_{a}^{^{239}\,\mathrm{Pu}}N_{0}^{^{239}\,\mathrm{Pu}} \end{pmatrix} \Delta t; \\ N^{^{240}\,\mathrm{Pu}} &= N_{0}^{^{240}\,\mathrm{Pu}} + \begin{pmatrix} \Phi_{m}\sigma_{c}^{^{239}\,\mathrm{Pu}}N_{0}^{^{239}\,\mathrm{Pu}} + \Phi_{p}I_{c}^{^{239}\,\mathrm{Pu}}N_{0}^{^{239}\,\mathrm{Pu}} - \\ -\Phi_{m}\sigma_{a}^{^{240}\,\mathrm{Pu}}N_{0}^{^{240}\,\mathrm{Pu}} - \Phi_{p}I_{c}^{^{240}\,\mathrm{Pu}}N_{0}^{^{240}\,\mathrm{Pu}} - \\ \end{pmatrix} \Delta t; \\ N^{^{241}\,\mathrm{Pu}} &= N_{0}^{^{241}\,\mathrm{Pu}} + \begin{pmatrix} \Phi_{m}\sigma_{c}^{^{240}\,\mathrm{Pu}}N_{0}^{^{240}\,\mathrm{Pu}} + \Phi_{p}I_{c}^{^{240}\,\mathrm{Pu}}N_{0}^{^{240}\,\mathrm{Pu}} - \\ -\Phi_{m}\sigma_{a}^{^{241}\,\mathrm{Pu}}N_{0}^{^{241}\,\mathrm{Pu}} - \Phi_{p}I_{c}^{^{241}\,\mathrm{Pu}}N_{0}^{^{241}\,\mathrm{Pu}} - \\ \end{pmatrix} \Delta t. \end{split}$$

где Δt – шаг интегрирования по времени (в расчете задавалось значение пол года, что соответствует выгоранию 18,7 МВтсут/кг; глубина выгорания на конец кампании составит 150 МВтсут/кг); N_0 , N – начальная и конечная концентрация соответствующего нуклида, при переходе к следующему шагу интегрирования по времени (начальное значение концентрации приравнивалось к конечной на предыдущем шаге); Φ_p – плотность потока резонансных нейтронов; σ_a , σ_c – среднегрупповые микросечения поглощения и радиационного захвата, соответственно; I_a , I_c – среднегрупповые эффективные резонансные интегралы поглощения и радиационного захвата, соответственно.

При определении концентраций ядер ²³⁵U применялось аналитическое решение дифференциального уравнения, т. к. метод конечных разностей при выбранном шаге интегрирования по времени приводил к некорректным значениям концентраций в конце кампании. Это связано с тем, что ²³⁵U не нарабатывается, а скорость его выгорания достаточно велика. В данной работе значения концентраций делящихся и воспроизводящих нуклидов в различные моменты времени необходимы только для определения изменений спектра потока повреждающих нейтронов и, следовательно, большая точность в определении концентраций не требуется.

Для Th-U цикла использовались следующие соотношения:

$$N^{^{235} \text{U}} = N_0^{^{235} \text{U}} \exp(-\Phi_m \sigma_a^{^{235} \text{U}} \Delta t);$$

$$N^{^{233} \text{U}} = N_0^{^{233} \text{U}} + \begin{pmatrix} \Phi_m \sigma_c^{^{232} \text{Th}} N_0^{^{232} \text{Th}} + \Phi_p I_c^{^{232} \text{Th}} N_0^{^{232} \text{Th}} - \\ -\Phi_m \sigma_a^{^{233} \text{U}} N_0^{^{233} \text{U}} - \Phi_p I_a^{^{233} \text{U}} N_0^{^{233} \text{U}} \end{pmatrix} \Delta t;$$

$$N^{^{234} \text{U}} = N_0^{^{234} \text{U}} + \begin{pmatrix} \Phi_m \sigma_c^{^{233} \text{U}} N_0^{^{233} \text{U}} + \Phi_p I_c^{^{233} \text{U}} N_0^{^{233} \text{U}} - \\ -\Phi_m \sigma_a^{^{234} \text{U}} N_0^{^{234} \text{U}} - \Phi_p I_c^{^{234} \text{U}} N_0^{^{234} \text{U}} \end{pmatrix} \Delta t.$$

Для определения изотопного состава ядерного топлива в Th-U ядерном топливном цикле (ЯТЦ) изменение концентрации ²³⁵U так же, как и в U-Pu цикле, определялось аналитическим решением дифференциального уравнения, т. к. использования метода конечных разностей приводило к занижению значений. Для образования ²³⁵U из ²³²Th необходимо, что бы происходило 3 последовательных радиационных захватов нейтронов, поэтому скорость образования ²³⁵U значительно ниже, чем скорость его выгорания. Метод конечных разностей для определения концентраций ядер ²³⁵U использовался только при их отсутствии в стартовой загрузке в Th-U ЯТЦ, при этом использовалось соотношение:

$$N^{^{235}\text{U}} = N_{0}^{^{235}\text{U}} + \begin{pmatrix} \Phi_{m}\sigma_{c}^{^{234}\text{U}}N_{0}^{^{234}\text{U}} + \Phi_{p}I_{c}^{^{234}\text{U}}N_{0}^{^{234}\text{U}} - \\ -\Phi_{m}\sigma_{a}^{^{235}\text{U}}N_{0}^{^{235}\text{U}} - \Phi_{p}I_{a}^{^{235}\text{U}}N_{0}^{^{235}\text{U}} \end{pmatrix} \Delta t.$$

Определение значений плотностей потоков и сечений ядерных реакций в четырехгрупповом представлении

В спектре потока нейтронов выделяются четыре группы:

- 1 группа: быстрые повреждающие нейтроны с *E_n*>0,18 МэВ (с 1 по 7 группу включительно), необходимы для определения степени повреж- денности кристаллической структуры реактор- ного графита и флюенса повреждающих ней-тронов;
- 2 группа: быстрые не повреждающие нейтроны с 465 эВ>E_n>0,18 МэВ (с 8 по 16 группу включительно). Термин «не повреждающие нейтроны» не значит, что они не производят структурных нарушений, это значит, что их экспериментальная регистрация, как правило, не производится. Вклад нейтронов с энергией ниже 0,18 МэВ в процесс дефектообразования не превышает 20 %;
- 3 группа: резонансные нейтроны (с 17 по 25 группу включительно) с 0,215 эВ>*E_n*>465 эВ, необходимы для определения изменения нуклидного состава ядерного топлива;
- 4 группа: тепловые нейтроны с 0,0252 эВ>E_n>0,215 эВ (26 группа), необходимы для определения изменения нуклидного состава ядерного топлива, проведения нормировки потоков на мощность реактора, определения эффективного коэффициента размножения и других нейтронно-физических параметров активной зоны.

Определение значений потоков нейтронов в каждой из четырех групп проводится суммированием потоков в энергетических группах многогруппового представления.

Усреднение значений макроскопических сечений поглощения для четырех групп проводится по соотношению:

$$\Sigma_{a_j} = \frac{\sum_{i=k}^m (\Sigma_{c_i} + \Sigma_{f_i}) \Phi_i}{\sum_{i=k}^m \Phi_i},$$

где *j* – номер группы с 1 по 4; Σ_{ci} , Σ_{fi} – макроскопические сечения радиационного захвата и деления в *i*-й группе (с 1 по 26 группу), соответственно; Φ_i – значение плотности потока нейтронов в *i*-й группе.

Значения эффективного коэффициента размножения определялись из соотношения:

$$k_{s\phi} = \frac{\overline{v_f \Sigma_f}}{\overline{\Sigma}_a + \overline{D}B^2},$$

где $\overline{v_f \Sigma_f} = \frac{\sum_{i=1}^{26} v_{f_i} \Sigma_{f_i} \Phi_i}{\sum_{i=1}^{26} \Phi_i} -$ среднее значение количе

ства вторичных нейтронов, образующихся при прохождении первичным нейтроном единицы длины пути; v_{f_i} – число вторичных нейтронов на 1 акт деления первичным нейтроном *i*-й группы; Σ_{f_i} – среднее макроскопическое сечение деление ядер $\frac{26}{2}$

нейтронами *i*-й группы;
$$\overline{D} = \frac{\sum_{i=1}^{i} D_i \Phi_i}{\sum_{i=1}^{26} \Phi_i} -$$
среднее

значение коэффициента диффузии нейтронов; D_i – коэффициент диффузии нейтронов *i*-й группы;

$$\overline{\Sigma}_{a} = \frac{\sum_{i=1}^{2} \Sigma_{a_{i}} \Phi_{i}}{\sum_{i=1}^{26} \Phi_{i}}$$
 – среднее макроскопическое сече-

ние поглощения; Σ_{a_i} — макроскопическое сечение поглощения нейтронов *i*-ой группы; B^2 — геометрический параметр.

Результаты расчета для уран-плутониевого ЯТЦ

Результаты расчетов концентрации делящихся и воспроизводящих нуклидов ядерного топлива в U-Pu ЯТЦ сведены в табл. 1. При стартовой загрузке с обогащением C(²³⁵U)=20 %, C(Pu)=0 % на конец кампании ядерного топлива нуклидный состав плутония составил: 72 % – ²³⁹Pu, 10 % – ²⁴⁰Pu и 18 % – ²⁴¹Pu. Далее этот состав используется при рассмотрении U-Pu ЯТЦ, когда в стартовой загрузке присутствует плутоний. Результаты расчета средних по призматическому топливному блоку значений концентраций делящихся и воспроизводящих нуклидов топлива, плотностей потоков в четырех группах и эффективного коэффициента размножения нейтронов в течение кампании топлива для U-Pu ЯТЦ приведены в табл. 1.

Соотношение, связывающее среднее значение выгорания топлива (*Z*) и время эксплуатации призматического топливного блока:

$$Z = \frac{Qk_{s\phi,cym.}t}{n_{TE}m_{TE}(U)} \approx 37,4t, \text{ (MBr cyt/kr)}$$

где Q — мощность ядерного реактора, 600 MBT; $k_{x\phi,cym.}$ — количество эффективных суток в году, 270 эф.сут./год; t — время эксплуатации призматического топливного блока (измеряется в годах), до 4 лет; n_{TE} — количество топливных блоков в активной зоне, 1020 шт; m_{TE} (U) — масса урана, содержащаяся в одном топливном блоке, 4,25 кг.

При эксплуатации топливного блока со стартовой загрузкой: C(²³⁵U)=20 %, C(Pu)=0 % концен-

Стартовое обогаще- ние по ²³⁵ U и Pu, %	<i>t</i> , лет	Выгорание, МВт∙сут/кг	N ²³⁵ ^U , см ⁻³	N ²³⁹ U, см ⁻³	N ²⁴⁰ U, см ⁻³	N ²⁴¹ ^U , CM ⁻³	Ф _{б>180 кэВ} , 10 ¹³ см ⁻² ⋅с ⁻¹	Ф _{б<180 кэВ} , 10 ¹³ см ⁻² ·с ⁻¹	Φ_p , 10 ¹³ CM ⁻² ·C ⁻¹	Φ ₇ , 10 ¹³ CM ⁻² ·C ⁻¹	$k_{\scriptscriptstyle \ni \phi \phi}$
C(²³⁵ U)=20 C(Pu)=0	0	0	2,17·10 ¹⁹	0	0	0	3,21	5,22	3,69	3,54	1,26
	1	37,4	1,71·10 ¹⁹	2,59·10 ¹⁸	1,70.10 ¹⁷	0	3,57	5,86	4,16	3,76	1,22
	2	74,8	1,32.10 ¹⁹	4,03.1018	4,61.1017	3,76.1017	3,83	6,39	4,63	4,04	1,16
	3	112,2	1,02·10 ¹⁹	4,81.1018	6,19·10 ¹⁷	9,05·10 ¹⁷	4,03	6,77	4,96	4,26	1,14
	4	149,6	7,60.1018	5,19·10 ¹⁸	7,03·10 ¹⁷	1,31.1018	4,17	7,07	5,28	4,66	1,11
C(²³⁵ U)=10 C(Pu)=10	0	0	1,09·10 ¹⁹	7,84.1018	1,08.1018	1,96.1018	4,75	7,94	5,47	3,16	1,16
	1	37,4	8,78·10 ¹⁸	7,38·10 ¹⁸	9,13.1017	2,50·10 ¹⁸	4,71	7,85	5,42	3,40	1,17
	2	74,8	6,95·10 ¹⁸	6,94·10 ¹⁸	8,89·10 ¹⁷	2,52·10 ¹⁸	4,64	7,76	5,48	3,80	1,15
	3	112,2	5,42·10 ¹⁸	6,51.1018	8,69·10 ¹⁷	2,40.1018	4,56	7,68	5,56	4,29	1,13
	4	149,6	4,11.1018	6,07·10 ¹⁸	8,50·10 ¹⁷	2,22·10 ¹⁸	4,48	7,61	5,67	4,88	1,10
C(²³⁵ U)=0 C(Pu)=20	0	0	0	1,56·10 ¹⁹	2,17·10 ¹⁸	3,90.1018	6,49	11,1	7,65	2,88	1,07
	1	37,4	0	1,21.1019	1,39.1018	5,19·10 ¹⁸	5,94	9,95	6,69	3,14	1,16
	2	74,8	0	9,73·10 ¹⁸	1,20.10 ¹⁸	4,65·10 ¹⁸	5,46	9,17	6,37	3,74	1,15
	3	112,2	0	7,99·10 ¹⁸	1,07.1018	3,77.1018	5,08	8,60	6,24	4,58	1,11
	4	149,6	0	6,63·10 ¹⁸	9,74·10 ¹⁷	2,91.1018	4,77	8,20	6,27	5,67	1,06

Таблица 1. Средние по призматическому топливному блоку значения концентраций делящихся и воспроизводящих нуклидов топлива, плотностей потоков в четырех группах и эффективного коэффициента размножения нейтронов в течение кампании топлива для U-Pu ЯТЦ

трация ²³⁵U снижается с большей высокой скоростью, чем при составе загрузки $C(^{235}U)=10$ %, C(Pu)=10 %, т. к. во втором случае большая часть делений обусловлена наличием ²³⁹⁺²⁴¹Pu в ядерном топливе.

При эксплуатации топливного блока со стартовой загрузкой: $C(^{235}U)=10\%$, C(Pu)=10% концентрация ²³⁹Pu медлено снижается. Это обусловлено тем, что скорость деления ²³⁹Pu практически компенсируется его образованием при радиационном захвате нейтронов ядрами ²³⁸U. Концентрация ²⁴⁰Pu также медленно снижается. Концентрация ²⁴¹Pu в начале кампании возрастает за счет радиационного захвата нейтронов ²⁴⁰Pu, а затем снижается, т. к. в течение кампании концентрация ядер ²⁴⁰Pu становится все меньше и, следовательно, снижается скорость образования ²⁴¹Pu — процесс деления ²⁴¹Pu превалирует над процессом его образования.

Анализ полученных результатов показывает, что определяющее влияние на характер зависимости плотности потока повреждающих нейтронов от выгорания (времени эксплуатации топливного блока) в U-Pu ЯТЦ оказывает зависимость концентрации делящихся изотопов Pu от выгорания и зависимость вкладов отдельных изотопов в общую плотность деления ядер. Это обусловлено тем, что наличие делящихся изотопов плутония в ядерном топливе увеличивает число вторичных нейтронов на акт деления. Вторичные нейтроны, образующиеся при делении, являются быстрыми и до момента их поглощения ядрами вносят значительный вклад в часть спектра нейтронов, называемую спектром замедления. Нейтроны именно этой части спектра вносят наибольший вклад в процесс дефектообразования и нарушения структуры графита.

Результаты расчета для торий-уранового ЯТЦ

Расчетные концентрации делящихся и воспроизводящих нуклидов ядерного топлива в Th-U ЯТЦ сведены в табл. 2. В работе варьировались значения концентраций ядер ²³⁵U и ²³³U в ядерном топливе в стартовой загрузке. Результаты расчета средних по призматическому топливному блоку значений концентраций делящихся и воспроизводящих нуклидов топлива, плотностей потоков в четырех группах и эффективного коэффициента размножения нейтронов в течение кампании топлива для Th-U ЯТЦ приведены в табл. 2.

Сравнительный анализ Th-U и U-Pu ЯТЦ показывает, что выгорание ²³⁵U в Th-U топливном цикле больше, чем в U-Pu, т. к. значение микроскопического сечения деления ²³³U ниже, чем для ²³⁹Pu. Значение микроскопического сечения радиационного захвата ²³²Th ниже, чем для ²³⁸U, и, следовательно, скорость образования ²³³U ниже скорости образования ²³⁹Ри. В U-Ри ЯТЦ происходит наработка ядер делящегося нуклида ²⁴¹Ри. Все это приводит к тому, что доля делений, приходящаяся на делящиеся изотопы Ри в U-Ри ЯТЦ выше, чем на ²³³U в Th-U ЯТЦ. Анализ Th-U и U-Pu ЯТЦ показывает, что стационарное значение концентрации делящихся изотопов ²³³U и ²³⁹Pu в реакторе ГТ-МГР без учета изменения концентрации воспроизводящих нуклидов ²³²Th и ²³⁸U достигает значения 3,5·10¹⁸ см⁻³ для ²³³U и 5,5·10¹⁸ см⁻³ для ²³⁹Pu.

Основное влияние на значение плотности потока быстрых повреждающих нейтронов в Th-U ЯТЦ оказывает концентрация ²³³U, т. к. он характеризуется большей эффективностью деления (σ_f/σ_a) и образует больше вторичных нейтронов на акт деления. Снижение плотности потока быстрых повреждающих нейтронов в течение кампании топлива

Стартовое обогаще- ние по ²³⁵ U и ²³³ U, %	<i>t</i> , лет	Выгорание, МВт∙сут/кг	N ²³⁵ U, см ⁻³	N ²³³ U, см ⁻³	N ²³⁴ ^U , CM ⁻³	Ф _{б>180 кэв} , 10 ¹³ см ⁻² ⋅с ⁻¹	Ф _{б<180 кэв} , 10 ¹³ см ⁻² ⋅с ⁻¹	Φ_p , 10 ¹³ CM ⁻² ·C ⁻¹	Φ _m , 10 ¹³ CM ⁻² ·C ⁻¹	$k_{ m a \phi \phi}$
C(²³⁵ U)=20 C(²³³ U)=0	0	0	2,17·10 ¹⁹	0	0	3,21	5,25	3,69	3,54	1,22
	1	37,4	1,70.10 ¹⁹	1,14.1018	1,23.1016	3,18	5,27	3,84	4,25	1,17
	2	74,8	1,26·10 ¹⁹	1,87.1018	6,75·10 ¹⁶	3,13	5,31	4,09	5,38	1,09
	3	112,2	8,60·10 ¹⁸	2,43.1018	1,60·10 ¹⁷	3,10	5,42	4,52	7,14	0,99
	4	149,6	5,20·10 ¹⁸	2,70·10 ¹⁸	2,89·10 ¹⁷	3,08	5,65	5,19	9,84	0,87
C(²²⁵ U)=10 C(²²³ U)=10	0	0	1,09·10 ¹⁹	1,09·10 ¹⁹	0	3,69	5,94	3,86	3,72	1,30
	1	37,4	8,43·10 ¹⁸	8,72·10 ¹⁸	4,11.1017	3,51	5,78	4,05	4,72	1,20
	2	74,8	6,00·10 ¹⁸	6,82·10 ¹⁸	7,34·10 ¹⁷	3,37	5,72	4,40	6,34	1,08
	3	112,2	3,80·10 ¹⁸	5,15·10 ¹⁸	9,77·10 ¹⁷	3,25	5,81	5,07	9,10	0,92
	4	149,6	1,90·10 ¹⁸	3,75·10 ¹⁸	1,13.1018	3,17	6,23	6,47	14,6	0,72
C(²³⁵ U)=0 C(²³³ U)=20	0	0	0	2,17·10 ¹⁹	0	4,19	6,67	4,06	3,93	1,37
	1	37,4	3,24·10 ¹⁶	1,59·10 ¹⁹	8,49·10 ¹⁷	3,86	6,33	4,30	5,35	1,23
	2	74,8	1,69.1017	1,09·10 ¹⁹	1,47.1018	3,60	6,17	4,81	7,68	1,04
	3	112,2	3,52·10 ¹⁷	6,69·10 ¹⁸	1,84·10 ¹⁸	3,38	6,29	5,89	12,00	0,82
	4	149,6	4,90.1017	3,72.1018	1,91.1018	3,22	6,85	7,98	20,00	0,59

Таблица 2. Средние по призматическому топливному блоку значения концентраций делящихся и воспроизводящих нуклидов топлива, плотностей потоков в четырех группах и эффективного коэффициента размножения нейтронов в течение кампании топлива для Th-U ЯТЦ

при стартовой загрузке $C(^{235}U)=20$ %, $C(^{233}U)=0$ % обусловлено тем, что число делений тепловыми нейтронами остается постоянным, а вклад в общее число делений за счет быстрых и резонансных нейтронов снижается.

Заключение

Эффективный коэффициент размножения нейтронов при среднем по активной зоне реактора значении обогащения С(235U)=14 % в холодном разотравленном состоянии составил 1,144, что соответствует запасу реактивности 12,6 % и удовлетворительно согласуется с проектным значением максимального запаса реактивности в холодном разотравленном состоянии в течение кампании 12,5 %. За время эксплуатации призматического топливного блока 1080 эфф. сут. флюенс по быстрым повреждающим нейтронам составит 3,5·10²¹ см⁻², а по всем быстрым нейтронам 9,3·10²¹ см⁻². В работе [5] приведено значение флюенса по быстрым нейтронам 5·10²¹ см⁻². Это расхождение вызвано различным выбором значений энергий, ограничивающих быструю группу нейтронов. Например, если к бы-

СПИСОК ЛИТЕРАТУРЫ

- Виргильев Ю.С. Свойства реакторного графита и его работоспособность в водографитовых реакторах // Материаловедение. - 2001. – № 2. – С. 44–52.
- Карпухин В.И., Николаенко В.А., Кузнецов В.Н. Критический флюенс нейтронов как фактор, определяющий ресурс графита кладки РБМК // Атомная энергия. – 1997. – Т. 83. – Вып. 5. – С. 325–329.
- Бойко В.И., Гаврилов П.М., Кошелев Ф.П., Мещеряков В.Н., Нестеров В.Н., Ратман А.В., Шаманин И.В. Оценка ресурса

стрым нейтронам относить только нейтроны деления, то быстрая энергетическая группа нейтронов будет ограничиваться 11-й группой ($E_n>10$ кэВ) в 26-групповом приближении. При этом значение флюенса быстрых нейтронов будет составлять около 6·10²¹ см⁻².

Увеличение концентрации делящихся изотопов Ри в топливе приводят к существенному росту плотности потока повреждающих нейтронов. Так при переходе со стартовой композиции в U-Pu ЯТЦ с концентрациями ядер $C(^{235}U)=20$ %; C(Pu)=0 % на композицию $C(^{235}U)=0$ %; C(Pu)=20 % плотность потока повреждающих нейтронов в начале кампании увеличится примерно в 2 раза. В аналогичной ситуации для Th-U ЯТЦ замена ^{235}U на ^{233}U приведет к увеличению плотности потока повреждающих нейтронов примерно в 1,3 раза.

Работа выполнена в рамках государственного контракта № П428, полученного на проведение поисковых научно-исследовательских работ по направлению «Ядерно-энергетические установки нового поколения» в рамках мероприятия 1.2.2 Программы», федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы». Номер конкурсной заявки: НК-172П/1.

графита топливных блоков реактора ГТ-МГР // Известия Томского политехнического университета. – 2005. – Т. 308. – № 5. – С. 81–85.

 Кодочигов Н.Г., Сухарев Ю.П., Марова Е.В., Усынина С.Г. Возможности эксплуатации ГТ-МГР с разным топливом // Атомная энергия. – 2007. – Т. 102. – Вып. 1. – С. 68–72.

Поступила 08.04.2010 г.