

VIII Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 6. Актуальные вопросы ядерного нераспространения, безопасность и

экология ядерной отрасли

Гамма-спектрометрия предоставляет уникальные возможности проведения разнообразных исследований во многих областях знаний. Основной задачей спектрометрических измерений является определение энергии, интенсивности гамма-линий от различных источников, их идентификации и локализации. Посредством данного типа исследования осуществляется разрушающий и неразрушающий анализы ядерных и радиоактивных материалов [1].

Вследствие физических процессов, происходящих в исследуемом веществе пробы, в спектре пики полного поглощения отклоняются от дискретного значения и носят характер распределения Гаусса, что осложняет проведение качественного и количественного анализа материалов. Поэтому в гамма-спектрометрии возникает необходимость снижения значения допуска по энергии при идентификации неизвестных изотопов. Если расстояние между характеристическими гамма-линиями изотопов превышает заданный допуск по энергии, то увеличивается вероятность корректно идентифицировать неизвестные изотопы. Поэтому для повышения достоверности идентификации необходимо минимизировать допуск по энергии при идентификации неизвестных нуклидов.

В данной работе рассмотрено влияние статистического набора данных в пике полного поглощения на точность определения центроиды и соответственно энергии этого пика. Измерения проводились на коаксиальном планарном детекторе из особо чистого германия производства фирмы Canberra. В качестве источников гамма-излучения использовались образцовые стандартные гамма-излучатели (ОСГИ). Измерения были проведены на всем диапазоне энергий от 88 кэВ до 1332 кэВ.

В результате установлена зависимость точности определения энергии пика полного поглощения от статистического набора в этом пике. Показано, что для минимизации допуска по энергии при качественном анализе с использованием полупроводникового детектора из особо чистого германия необходимо чтобы площадь пика полного поглощения составляла не менее 100 000 отсчетов. В этом случае допуск по энергии может быть снижен до 10 эВ, что значительно повышает достоверность идентификации.

СПИСОК ЛИТЕРАТУРЫ

1. Бойко В.И., Жерин И.И., Каратаев В.Д., Недбайло Ю.В., Силаев М.Е. Образовательная программа в области физической ядерной безопасности. Учебное пособие «Методы и приборы для измерения ядерных и других радиоактивных материалов». – 2011. – 356 с.

ПРИМЕНЕНИЕ ТЕХНОЛОГИИ BIG DATA В ОБЛАСТИ АТОМНОЙ ЭНЕРГИИ

С.Р. Зинатулина, А.В. Годовых

Национальный исследовательский Томский политехнический университет,

Россия, г.Томск, пр. Ленина, 30, 634050

E-mail: Safina 0194@mail.ru

К критической инфраструктуре государства, принято относить особо важные объекты, системы или сети, в случае отказа работы которых, в результате выхода из строя или умышленного причинения им вреда, вплоть до их уничтожения, будут иметь тяжелые, или даже разрушительные последствия для национальной безопасности, экономики, общественного здравоохранения и других составляющих инфраструктуры государства. Одними из подобных объектов являются объекты атомной энергии. На данных объектах действуют различные технические системы, обеспечивающие их безопасное функционирование. К ним относятся системы жизнеобеспечения объекта, контроля радиационной обстановки, учета и контроля ядерных материалов и другие. На ядерных объектах, в течение последнего десятилетия, реализуется программа по

VIII Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 6. Актуальные вопросы ядерного нераспространения, безопасность и экология ядерной отрасли

широкомасштабному замещению устаревших аналоговых систем, цифровыми. Это объясняется несколькими причинами. Одна из них, это ужесточение требований нормативно-правовой документации, стремление соответствовать международным стандартам безопасности, а также повсеместным развитием цифровой электроники, выходом из тиража некоторых видов аналоговых продуктов. Еще одной немаловажной причиной для внедрения современных технических средств, является то, что для контроля и упорядочивания деятельности организаций, осуществляющих деятельность в области атомной энергии, востребованы компьютерные системы с достаточным уровнем производительности, высокой надежностью и удобством обслуживания. Возможность внедрения компьютерных систем объясняется двусторонней зависимостью.

В связи с расширением номенклатуры цифровых устройств, использующихся для обеспечения безопасности на ядерном объекте, растут возможности и пути сбора информации. Контроль параметров окружающей среды, обработка данных с устройств считывания, контроля, видеонаблюдения и пр., в каждый момент времени способны генерировать огромные массивы данных. По требованиям нормативно-правовой документации, вся информация о состоянии всех систем объектов ядерно-топливного цикла, должна храниться сроком не меньшим чем срок эксплуатации рассматриваемого объекта. Эти требования говорят о необходимости хранения соответствующего количества информации. Данные должны обрабатываться, анализироваться и храниться. При переходе объектов ядерно-топливного цикла на использование цифровых устройств, появляется возможность использовать последние наработки в сфере информационных технологий. Одной из подобных разработок в ІТ сфере является концепция Від Data — "большие данные". Понятие "большие данные" связывают с инструментами, процессами и процедурами, которые позволяют создавать, воздействовать и управлять очень большими наборами данных и местами их хранения.

С другой стороны, если обобщить все вышесказанное, то можно сказать что появилась возможность хранить, обрабатывать и анализировать потоки данных, значительно превышающие те, что были доступны буквально несколько лет назад. Появились новые методы, средства и устройства обработки данных. Создаются и совершенствуются математические модели и алгоритмы обработки. Разрабатываются технологии хранения данных в долговременной перспективе. Компьютерные технологии сделали резкий скачок вперед. Также опираясь на вышесказанное можно сделать вывод не только о новых возможностях обрабатывать и хранить информацию, но и генерировать ее в новых объемах. Под этим понимается расширение использования систем мониторинга, в качественном и количественном ключе, использование новых алгоритмов оценки и прогнозирования ситуаций. Для получения таких объемов информации необходимы и соответствующие технических средства для ее сбора. То есть появилась необходимость разработки и внедрения новейших технических средств обеспечивающие более объемный и качественный, своевременный сбор информации о состоянии объекта.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хофрейтер Л. Критическая инфраструктура-содержание, структура и проблемы ее защиты // Securitologia. 2014. T.1. − № 1. C. 141–152.
- 2. 2. Abawajy J. Comprehensive analysis of big data variety landscape # International Journal of Parallel, Emergent and Distributed Systems. -2015.-T.1.- Volume 30, Issue 1.-C.5-14.