

VIII Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 6. Актуальные вопросы ядерного нераспространения, безопасность и экология ядерной отрасли

предназначенные для получения термодинамическистойких, способных сохранять длительное время механическую прочность и химическую стойкость материалов. К таким новым формам отходов относятся стеклокерамика, керметы, витромет и различные виды минералоподобной керамики. Идея, заложенная в основу иммобилизации различных радиоактивных отходов в керамику, основана на использовании устойчивых минералов, основная масса которых достаточно хорошо изучена. Разработана концепция многофазной керамической формы, получаемой путем горячего прессования кальцинированных отходов с химическими добавками [2].

Керамические формы при плотности 4 г/см³ позволяют включать в них до 50-65% отходов по массе, что значительно больше, чем стекло. Относительная кристаллохимическая изменчивость керамических форм отходов позволяет составлять керамики наилучшего состава. Керамики допускают гибкость в отношении композиционных изменений в одном потоке отходов. Гидротермальная и радиационная стойкость отдельных минеральных фаз обеспечивает долговременную стойкость керамической формы отходов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Общероссийская общественная организация Друзья Земли [Электронный ресурс] /- Санкт-Петербург, 2013.
- Режим доступа: http://rusecounion.ru/app_bashkir_npp, свободный.
- 2. Бекман И.Н. Ядерная индустрия / И.Н. Бекман. Москва 2005. 8 с.

КОМПЛЕКСНАЯ БЕЗОПАСНОСТЬ ТЕРРИТОРИАЛЬНО-РАСПРЕДЕЛЁННОГО ОБЪЕКТА

А.А. Мерзляков, А.В. Годовых

Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр.Ленина, 30, 634050

E-mail: Cannavaro74@mail.ru

В современных условиях проблема обеспечения комплексной безопасности территориально-распределённого объекта особо актуальна и остаётся приоритетной. Для достижения безопасности следует осуществлять всесторонний анализ потенциальных угроз, помогающий разработать эффективные средства защиты и минимизировать возможные риски.

При этом территориально-распределённый объект — это объект, который является сложными и многофункциональным, представляют при решении проблемы безопасности как единое целое формирование, объединяемое общей границей либо по признаку административного деления, либо по признаку принадлежности или владения, либо по признаку функционального назначения. В общем случае они включают в себя определённое количество требующих обеспечения безопасности составляющих объектов, как правило, неоднородных по своим характеристикам, назначению, условиям размещения, важности и, следовательно, имеющих свои особенности в части угроз безопасности, их блокирования и нейтрализации. Угрозами для территориально-распределенного объекта будут осуществляться такие явления, имеющие физическую природу, некомпетентность собственного персонала и т.д.

Основа эффективного обеспечения безопасности территориально-распределенного объекта — создание достоверной модели угроз безопасности, содержащей ранжированные по выбранным показателям угрозы безопасности и их источники, а также определяющей возможные последствия от реализации этих угроз.

В общем случае модель угроз безопасности – информационно-аналитическая модель, содержащая совокупность сведений, характеризующих состояние безопасности территориально-распределенного объекта.

VIII Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 6. Актуальные вопросы ядерного нераспространения, безопасность и экология ядерной отрасли

Для территориально-распределённого объекта целесообразно создавать базовую модель угроз безопасности и на её основе для конкретных объектов разрабатывать частные модели угроз безопасности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Мамонтов Р.И. Комплексные системы безопасности предприятия. М.: Наука, 2001. 155с.
- 2. Шабалина Л.Л. Комплексная безопасность предприятия. М.: Наука, 2007. 235с.
- 3. Брединский А.О. Обеспечение безопасности учебных заведений. М.: Горячая линия Телеком, 1998. 155

ПЕРСПЕКТИВЫ СОВЕРШЕНСТВОВАНИЯ МЕТОДИЧЕСКИХ ПОДХОДОВ К ПРОВЕДЕНИЮ ОЦЕНКИ ЭФФЕКТИВНОСТИ СИСТЕМЫ ФИЗИЧЕСКОЙ ЗАЩИТЫ ЯДЕРНОГО ОБЪЕКТА С УЧЕТОМ СОВРЕМЕННЫХ ТРЕБОВАНИЙ И УГРОЗ

А.В. Никиенко, Е.А. Власенко

Федеральное государственное унитарное предприятие «Горно-химический комбинат»,

Россия, Красноярский край, г. Железногорск, ул. Ленина, 53, 662972

E-mail: atomlink@mcc.krasnoyarsk.su

На ядерных объектах Российской Федерации создаются и эксплуатируются системы физической защиты (СФЗ). Эффективность таких систем определяется способностью противостоять несанкционированным действиям нарушителей в отношении предметов физической защиты. В Госкорпорации «Росатом» для оценки эффективности используется методика, базирующаяся на вероятностно-временном анализе [1].

Указанная методика имеет множество допущений, влияющих на достоверность результата расчета – показатель эффективности СФЗ. В работе рассмотрены перспективы совершенствования методики и даны предложения на основании практического опыта авторов, в числе которых следующие:

- 1. При анализе сценариев действий охраны и нарушителей моделировать действия нескольких групп подразделений сил охраны (тревожная группа, резерв караула) и потенциальных нарушителей (основная группа, группа прикрытия). Необходимо учитывать различные тактики действий, изменяющиеся в зависимости от обстановки, а также корректировать вероятности боестолкновений в зависимости от оснащенности той или иной группы вооружением и экипировкой.
- 2. Учитывать выполнение правила «двух лиц», в том числе при оценке вероятности подачи сигнала тревоги сотрудником, обнаружившим несанкционированные действия напарника-нарушителя в особо важной зоне.
- 3. Учитывать самозащищенность ядерных материалов при оценке вероятности хищения исходя из данных о мощности эквивалентной дозы излучения предмета физической защиты.
- 4. При расчете вероятности обнаружения учитывать вероятность нахождения комплекса инженернотехнических средств физической защиты (ИТСФЗ) в работоспособном состоянии в момент совершения несанкционированного действия на основании данных о надежности элементов комплекса, периодичности и продолжительности регламентных и ремонтных работ, количестве ремонтных бригад, приоритете обслуживания, сроках поставки запасных частей.
- 5. При расчете вероятности обнаружения учитывать эффективность компенсирующих организационно-технических мер (выставление постов, патрулирование, развертывание временных рубежей средств обнаружения и физических барьеров), принятых на период восстановления работоспособности основных элементов комплекса ИТСФЗ.

СПИСОК ЛИТЕРАТУРЫ

1. Методические рекомендации по оценке эффективности систем физической защиты ядерных объектов, утвержденные заместителем генерального директора Госкорпорации «Росатом» по безопасности К.И. Денисовым 06 июля 2015 года — М.: Госкорпорация «Росатом», 2015. — 93 с.