СПИСОК ЛИТЕРАТУРЫ

- Основы практической теории горения / В.В. Померанцев, М.К. Арефьев, Д.Б. Ахметов и др. – Л.: Энергия, 1973. – 227 с.
- Канторович Б.В. Основы теории горения и газификации твердого топлива. – М.: Изд-во АН СССР, 1958. – 194 с.
- Полежаев Ю.В., Юревич Ф.Б. Тепловая защита. М.: Энергия, 1976. – 349 с.
- Ким Л.В. Определение коэффициента теплообмена в пористых средах // Инженерно-физический журнал. 1993. Т. 65. — № 6. — С. 663—667.
- Алифанов А.М., Трянин А.П., Ложкин А.Л. Экспериментальное исследование метода определения коэффициента внутреннего теплообмена в пористом теле из решения обратной зада-

чи // Инженерно-физический журнал. — 1987. — Т. 52. — № 3. — С. 461—469.

- Страхов В.Л., Гаращенко А.Н., Рудзинский В.П. Расчет нестационарного прогрева многослойных огнезащитных конструкций // Вопросы оборонной техники. — 1944. — Сер. 15. — Вып. 1 (109—110). — С. 30—36.
- Самарский А.А. Теория разностных схем. М.: Наука, 1983. 354 с.
- Корчунов Ю.Н., Тюльпанов Р.С. Исследование скорости термического разложения древесины и торфа // Инженерно-физический журнал. – 1960. – № 7. – С. 102–105.
- Варгафтик Н.Б. Справочник по теплофизическим свойствам газов. – М.: Физматгиз, 1963. – 142 с.

УДК 533.6.011

НЕКОТОРЫЕ ТОЧНЫЕ РЕШЕНИЯ ОДНОМЕРНЫХ СТАЦИОНАРНЫХ УРАВНЕНИЙ ГАЗОВОЙ ДИНАМИКИ ДЛЯ КАНАЛА ПОСТОЯННОГО СЕЧЕНИЯ

В.М. Галкин

Томский политехнический университет E-mail: vlg@tpu.ru

Для дифференциальных уравнений, описывающих одномерное стационарное течение с переходом через скорость звука, предлагаются зависимости в правых частях этих уравнений, позволяющие получить аналитические выражения для параметров газа в канале постоянного сечения.

1. Введение

При решении стационарных газодинамических задач возникает проблема апробации разработанных программ путем сравнения с точными решениями. Для нестационарных течений таких решений достаточно много [1], в то время как для стационарных – значительно меньше. Прежде всего, это уравнения, описывающие течение от источника (стока), и трансцендентное уравнение, описывающее одномерное распределение числа Маха вдоль канала переменного сечения при изоэнтальпическом, изоэнтропическом течении идеального совершенного газа [2]:

$$\frac{\min(A)}{A} = M \left(\frac{\gamma + 1}{2 + (\gamma - 1)M^2}\right)^{(\gamma + 1)/(2(\gamma - 1))},$$
 (1)

где: $M=U\sqrt{\rho/(\gamma P)}$ – число Маха; ρ , U, P, A, γ – плотность, скорость, давление, площадь поперечного сечения сопла, показатель адиабаты газа. Большинство других решений базируется на (1). Так, в [3] нахождение параметров двухфазного течения сводится к решению уравнения (1) путем использования гипотезы о законе отставания частиц и введением некоторого эффективного показателя адиабаты.

В данной работе предлагаются зависимости в правых частях уравнения движения и энергии, при которых дифференциальные уравнения имеют точное решение в виде трансцендентного уравнения для распределения числа Маха вдоль канала постоянного сечения, и явные выражения для остальных параметров газа. Более простые соотношения приведены в [4].

2. Исходные уравнения

Рассмотрим одномерные стационарные уравнения для идеального совершенного газа в канале постоянного сечения:

$$\frac{d\rho U}{dx} = 0, \quad \frac{d(\rho U^2 + P)}{dx} = C_1, \quad \frac{d\rho UH}{dx} = C_2, \quad (2)$$

где: $H = \frac{\gamma}{\gamma - 1} \frac{P}{\rho} + \frac{U^2}{2}$ – полная энтальпия; x – про-

дольная координата, принадлежащая рассматриваемой области $[x_a;x_b]$; C_1 и C_2 – правые части уравнений движения и энергии.

Полагается, что: γ =const; заданы граничные условия на входе в сопло в виде $H=H(x_a)$, $S=S(x_a)$, $C_1(x_a)=C_2(x_a)=0$; внутри рассматриваемой области число Маха монотонно возрастает от дозвуковой до сверхзвуковой величины, и существует только одна точка x_* , в которой M=1.

Переходя к переменным *H*, *S*, *M*, *N* и используя вместо уравнения неразрывности его интеграл, перепишем уравнения (2) в следующем виде:

$$\frac{dS}{dx} = \left(\frac{C_2}{U} - C_1\right) \frac{(\gamma - 1)}{\rho^{\gamma}}, \quad \frac{dH}{dx} = \frac{C_2}{\rho U},$$
(3)

$$\left(\frac{\gamma+1}{2+(\gamma-1)M^2}\right)^{H_0}M = \frac{\min(N)}{N},$$
(4)

где:

$$N = \left(\frac{H}{H_0}\right)^{H_0} \left(\frac{S}{S_0}\right)^f, \qquad (5)$$
$$S = \frac{P}{\rho^{\gamma}}, H_0 = \frac{\gamma + 1}{2(\gamma - 1)}, \quad S_0 = \frac{1}{\gamma}, \quad f = \frac{1}{1 - \gamma}.$$

Старые переменные выражаются через новые с использованием формул:

$$U = M \sqrt{\frac{2(\gamma - 1)H}{2 + (\gamma - 1)M^2}}, \quad \rho = \frac{\min(N)}{U}, \quad P = S \rho^{\gamma}.$$
 (6)

С учетов вышеупомянутых ограничений на число Маха можно показать [5], что для *N* получается необходимое и достаточное условие существования в точке *x*^{*} единственного минимума:

$$\min(N) = N(x_*), \quad \frac{dN}{dx}\Big|_{x_*} = 0, \quad \frac{d^2N}{dx^2}\Big|_{x_*} > 0.$$
(7)

Произведем обезразмеривание отнесением x – к ширине канала, $U - \kappa$ критической скорости $U_*, \rho - \kappa$ критической плотности $\rho_*, P - \kappa$ произведению $\rho_* U_*^2$. Тогда $H(x_a) = H_0$ и $S(x_a) = S_0$. Подставляя последние два выражения в (5) получим граничное условие для N:

$$N(x_a) = 1. \tag{8}$$

3. Точные решения

Пусть заданы x_* , b_1 , b_2 , причем $x_a < x_* < x_b$, $0 \le b_1$, $0 \le b_2 \le 1$. Рассматривая простейшие зависимости, представим S в виде линейной функции, удовлетворяющей граничным условиям и условию не убывания энтропии, а *N* – в виде квадратичной функции, удовлетворяющей (7, 8):

$$S = S_0(b_1(x - x_a) + 1),$$
(9)

$$N = b_2 \left(\frac{x - x_*}{x_a - x_*}\right)^2 + 1 - b_2.$$
(10)

Тогда число Маха находится из трансцендентного уравнения (4), точное решение для Н получается из (5):

$$H = H_0 \left(N \left(\frac{S_0}{S} \right)^f \right)^{\frac{1}{H_0}},$$

а остальные параметры находятся из (6). Дифференцируя (5) по "х" и, используя (3), получим соотношения для C_1, C_2 , которые можно использовать в (2) для численного решения:

$$C_{2} = \frac{UH\rho}{H_{0}} \left(\frac{N'}{N} - f \frac{S'}{S} \right), \quad C_{1} = \frac{C_{2}}{U} + f \rho^{\gamma} S', \quad (11)$$

причем N, S, N', S' в (11) берутся из (9), (10). Штрих обозначает производную по "х". Очевидно, что если в (9) положить $b_1=0$, то этому будет соответствовать случай $S=S_0=$ const.

Для $H=H_0=$ const и (10) число Маха находится из (4), точное решение для S получается из (5):

$$S = S_0 N^{\frac{1}{f}}$$

остальные параметры из (6). Естественно, что в этом случае энтропийная функция на определенном участке может убывать. Правые части для ур. (2) получаются из ур. (3) и (5):

$$C_2 = 0, \quad C_1 = P \frac{N'}{N},$$
 (12)

где *N* и *N*′ берутся из (10).

Очевидно, что в предложенных соотношениях распределение числа Маха, определяемое из (4), зависит только от величин x_a , x_* , b_2 в (10).

4. Численные расчеты

На рис. 1 приведено распределение числа Маха вдоль канала, полученное из ур. (4) и (10) при значениях $\gamma=1,4, x_a=-4, x_s=0, x_b=2, b_2=\{0,1; 0,5; 0,9\}.$

Для предложенных правых частей ур. (11, 12) был проведен ряд расчетов методом установления по явной схеме Мак-Кормака [6] для нестационарного аналога ур. (2):

$$\begin{split} \frac{\partial \rho}{\partial t} + \frac{\partial \rho U}{\partial x} &= 0, \ \frac{\partial \rho U}{\partial t} + \frac{\partial (\rho U^2 + P)}{\partial x} = C_1 \\ \frac{\partial (\rho H - P)}{\partial t} + \frac{\partial \rho U H}{\partial x} = C_2, \end{split}$$

число точек сетки при этом равнялось 40. Начальное распределение, показанное на рис. 1, находилось из соотношений:

$$U = 0,18(x+2)+1, \quad \rho = \left(\left(H_0 - \frac{U^2}{2} \right) \frac{\gamma - 1}{\gamma S_0} \right)^{\frac{1}{\gamma - 1}}, \quad P = S_0 \rho^{\gamma},$$

что соответствует начальному положению точки $x_* = -2.$

Рис. 1. Распределение числа Маха вдоль канала

В процессе установления при использовании правых частей ур. (11, 12) и некоторого значения b₂, распределение числа Маха вдоль канала будет сходиться к соответствующей кривой на рис. 1, при этом положение точки *x*^{*} будет сходиться к 0.

На рис. 2 и рис. 3 показано положение самой левой из точек х. в процессе установления.

Рис. 3. Положение х. в процессе установления при H=const

Видно, что при $b_1=0,4$ и правых частях (11) амплитуда колебаний больше, чем при правых частях (12). Как видно из рисунков, во всех расчетах положение точки x_* сходится к точному значению, рав-

СПИСОК ЛИТЕРАТУРЫ

- Комаровский Л.В., Шабловский О.Н. Аналитическое исследование внутренних задач нестационарной газовой динамики и переноса тепла. — Томск: Изд-во Томск. ун-та, 1981. — 208 с.
- Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987. — 840 с.
- Стернин Л.Е. Основы газодинамики двухфазных течений в соплах. – М.: Машиностроение, 1974. – 212 с.

ному 0, причем во всех случаях остается только одна точка *x*_{*}.

Несмотря на то, что метод установления демонстрирует сходимость к точному решению и предельное распределение числа Маха вдоль канала, полученное при 2000 итераций (рис. 4) отличается от точного, изображенного на рис. 1 в третьем знаке после запятой, на промежуточных итерациях вполне возможно нарушение монотонности и появление нескольких точек x_* , что демонстрирует рис. 4. На рис. 2 и рис. 3 резкие скачки при $b_2=0,9$ как раз связаны с наличием нескольких точек x_* и сопровождающейся при этом перестройкой течения.

Рис. 4. Распределение числа Маха вдоль канала для разных итераций. I — номер итерации

5. Заключение

Предложены аналитические формулы, позволяющие находить распределение параметров газа с переходом через скорость звука в канале постоянного сечения. Эти формулы целесообразно использовать при тестировании соответствующих численных методов.

- Галкин В.М. О методе решения одномерных стационарных уравнений газовой динамики. // Математическое моделирование. – 2003. – Т. 15. – № 11. – С. 30–36.
- Галкин В.М. Итерационный метод решения одномерных уравнений газовой динамики // Известия Томского политехнического университета. – 2002. – Т. 305. – № 8. – С. 130–136.
- MacCormack R.W. The effect of viscosity in hyperbolicity impact cratering // AIAA Paper. – 1969. – V. 69. – P. 354.