- Филиппов М.М., Бабушкин Ю.В., Грибенюков А.И., Гинсар В.Е. Оценка динамики температурного поля в рабочем объеме вертикальной установки Бриджмена при продольноосевом перемещении ростового контейнера в процессе выращивания кристаллов // Известия Томского политехнического университета. – 2009. – Т. 315. – № 2. – С. 104–109.
- Официальный сайт компании ICP DAS. 2009: URL: http://www.icpdas.com/ (дата обращения: 20.11.2009).

Поступила 14.01.2010 г.

УДК 681.511.4

# АДАПТИВНАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ КОЖУХОТРУБНОГО ТЕПЛООБМЕННИКА

М.В. Скороспешкин, Г.П. Цапко, В.Н. Скороспешкин

Томский политехнический университет E-mail: smax@aics.ru

Предложена адаптивная система регулирования температуры углеводородного конденсата на выходе из кожухотрубного теплообменника, включающая в себя ПИ-регулятор и последовательное псевдолинейное корректирующее устройство динамических свойств систем автоматического регулирования. Проведено исследование свойств адаптивной системы регулирования температуры. Показана эффективность предложенной адаптивной системы при изменении параметров объекта управления с течением времени.

#### Ключевые слова:

Адаптивное псевдолинейное корректирующее устройство, система автоматического регулирования, нестационарный объект управления, качество регулирования.

#### Kev words:

The adaptive pseudo-linear correcting device, automatic control system, non-stationary object of control, quality of regulation.

В системах автоматического регулирования (САР) нестационарными объектами для осуществления заданного качества регулирования в процессе работы САР необходимо обеспечить целенаправленное изменение динамических характеристик регулирующего устройства таким образом, чтобы компенсировать нежелательные изменения свойств объекта управления.

В большинстве случаев это осуществляется изменением параметров пропорционально-интегрально-дифференциальных регуляторов (ПИДрегуляторов). Такие подходы описаны, например, в [1, 2], однако реализация этих подходов связана либо с идентификацией, либо с использованием специальных способов, основанных на вычислениях по кривой переходного процесса. Оба эти подхода достаточно сложны и требуют значительного времени на подстройку.

Менее распространенным, но более эффективным является способ, основанный на применении специальных адаптивных корректирующих устройств, которые включаются последовательно с регуляторами. Меняя определенным образом свои параметры, устройства корректируют динамические свойства САР и тем самым компенсируют изменение свойств объекта управления [3, 4].

В настоящей работе приводятся результаты исследований свойств системы автоматического регулирования температуры углеводородного кон-

денсата на выходе из кожухотрубного теплообменника процесса производства этилена в ООО «Томскнефтехим», реализованной на основе ПИ-регулятора и последовательного адаптивного псевдолинейного корректирующего устройства динамических характеристик САР с амплитудным подавлением [4].

Предлагаемый способ адаптации характеризуется тем, что в процессе работы системы регулирования параметры регулятора не меняются и соответствуют настройке, предшествующей запуску системы в работу. В процессе работы САР, в зависимости от изменений параметров объекта управления, меняется постоянная времени корректирующего устройства. Это изменение происходит только в тех случаях, когда качество регулирования становится неудовлетворительным вследствие изменения свойств объекта управления, или из-за воздействия на объект управления возмущений. Это позволяет обеспечить необходимый запас устойчивости системы и повысить качество переходных процессов.

Технологический процесс охлаждения и сушки пирогаза в ООО «Томскнефтехим» осуществляется на установке газоразделения. Установка газоразделения отличается сложностью, что обусловлено многокомпонентностью поступающей на её вход углеводородной смеси. Здесь, в узле первичного функционирования, очистки и сушки, пирогаз с

печей пиролиза поступает в сепаратор, где происходит его первичное отделение от содержащихся в нем углеводородного конденсата и воды. После прохождения сепаратора пирогаз поступает на вход первой ступени турбокомпрессора, после чего, проходя через холодильник, попадает в следующий сепаратор для дальнейшего его отделения от углеводородного конденсата и воды. Цикл прохождения пирогазом ступеней турбокомпрессора, холодильников и сепараторов повторяется пять раз, после чего охлаждённый и осушенный пирогаз поступает в первичную метановую колонну, предназначенную для грубой очистки метановодородной фракции. Оставшееся в сепараторах после отделения от пирогаза тяжелое жидкое топливо (углеводородный конденсат и вода) попадает в кожухотрубный теплообменник, в котором нагревается до температуры 90 °C, после чего откачивается на склад.

В данном технологическом процессе применяется теплообменник с изменяющимся агрегатным состоянием вещества. Передаточная функция теплообменника имеет вил:

$$W(s) = \left(\frac{K}{T_1 s + 1}\right) \left(\frac{1 - be^{-\tau \cdot s}}{(T_2 s + 1)(T_3 s + 1)}\right) \left(\frac{1}{T_4 s + 1}\right),$$

где K — статический коэффициент передачи теплообменника,  $T_1$ ,  $T_2$ ,  $T_3$ ,  $T_4$  — постоянные времени теплообменника, b — константа, учитывающая конструктивные особенности теплообменника,  $\tau$  — время, характеризующее запаздывание теплообменника.

Постоянная времени  $T_1$  определяет изменение давления пара в межтрубном пространстве;  $T_2$  и  $T_3$  – учитывают изменение теплообменных свойств стенок и жидкости в трубках теплообменника;  $T_4$  учитывает инерционность выходной камеры для технологического потока.

При исследовании CAP углеводородного конденсата использовалась передаточная функция теплообменника:

$$W(s) = \frac{9}{0,27s+1} \left( \frac{1 - 0.7e^{-10 \cdot s}}{(25.8s+1)(0.94s+1)} \right) \left( \frac{1}{1,11s+1} \right).$$
(\*)

Система автоматического регулирования температуры в теплообменнике должна постоянно

поддерживать температуру углеводородного конденсата на уровне 90 °C.

Из формулы (\*) видно, что теплообменник, как объект управления, обладает существенным запаздыванием, что необходимо учитывать при выборе закона регулирования. Требованиями на качество переходного процесса для данной САР являются величина перерегулирования <20 % и время регулирования <60 с.

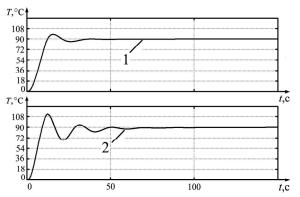
Учитывая указанные выше особенности кожухотрубного теплообменника с изменяемым агрегатным состоянием как объекта управления, в качестве САР температуры углеводородного конденсата была выбрана одноконтурная САР с ПИ-регулятором.

По методу расширенных частотных характеристик были рассчитаны настройки ПИ-регулятора, обеспечивающие требования на качество переходного процесса. Настройки имеют следующие значения:  $K_{\text{u}}$ =0,2;  $K_{\text{u}}$ =0,05.

На рис. 1 представлена модель САР температуры углеводородного конденсата на выходе из кожухотрубного теплообменника, составленная в системе MatLab 6.5 (Simulink).

Внутренними возмущениями объекта управления являются изменения: коэффициента теплопередачи на наружной и внутренней поверхностях трубы; удельной теплоемкости стенки трубки теплообменника. Основными внешними возмущениями являются изменения температуры теплоносителя и окружающей среды.

Эти параметры входят в значение постоянных времени  $T_2$  и  $T_3$  передаточной функции теплообменника. При уменьшении удельной теплоёмкости стенки трубки теплообменника или жидкости уменьшатся и значения постоянных времени  $T_2$  и  $T_3$  передаточной функции.


Рассмотрим случай, когда удельная теплоёмкости стенки трубки теплообменника понизилась настолько, что значение постоянной времени  $T_2$  передаточной функции теплообменника уменьшилось с 25,8 до 17,0 с.

На рис. 2 представлены кривые переходного процесса на ступенчатое задающее воздействие САР температуры углеводородного конденсата на выходе из кожухотрубного теплообменника с ПИ-регулятором с настройками, описанными вы-



Рис. 1. Модель САР температуры углеводородного конденсата на выходе из кожухотрубного теплообменника

ше, для случаев, когда значение постоянной времени  $T_2$ =25,8 с (кривая 1) и  $T_2$ =17 с (кривая 2).



**Рис. 2.** Кривые переходного процесса САР температуры углеводородного конденсата

Анализ переходных процессов показывает, что при изменении значения постоянной времени  $T_2$  с 25,8 до 17,0 с, качество САР оказывается неудовлетворительным.

Неудовлетворительным также является качество САР при воздействии на объект управления неконтролируемых возмущений, проявляющейся со временем его нестационарности. В этих случаях используемый в системе регулятор уже не может обеспечивать приемлемое качество регулирования, вплоть до того, что система может стать неустойчивой, что, в свою очередь, может не только привести к выпуску бракованной продукции, но и отрицательно сказывается на уровне взрыво- и пожаробезопасности объекта.

Для улучшения качества регулирования температуры углеводородного конденсата в теплообменнике и уменьшения негативного влияния неконтролируемых возмущений и нестационарности объекта управления на процесс регулирования, в САР предложено ввести последовательное адаптивное псевдолинейное корректирующее устрой-

ство с амплитудным подавлением. Данное адаптивное корректирующее устройство повышает запас устойчивости по амплитуде при изменении параметров объекта управления.

На рис. 3 представлена структурная схема САР с адаптивным псевдолинейным корректирующим устройством с амплитудным подавлением, где g — задающее воздействие системы регулирования;  $\varepsilon$  и  $\varepsilon_1$  входной и выходной сигналы корректирующего устройства; u — управляющее воздействие; y — выход объекта управления; КУ – псевдолинейное корректирующее устройство с амплитудным подавлением; БН – блок настройки псевдолинейного корректирующего устройства; БАК – блок анализа качества системы;  $\Gamma\Pi C$  — генератор пробного сигнала; z — возмущающее воздействие; q — параметр, характеризующий нестационарность корректирующего устройства; T — постоянная времени корректирующего устройства; I — критерий качества системы;  $S_1$  и  $S_2$  — сигнал запуска/останова генератора пробного сигнала.

Способ адаптации предложенной САР характеризуется тем, что в процессе работы системы регулирования параметры ПИ-регулятора не меняются и соответствуют настройке, предшествующей запуску системы в работу. В процессе работы, в зависимости от изменения параметров объекта управления, меняется создаваемый корректором запас устойчивости по амплитуде. Эти изменения происходят только в тех случаях, когда качество регулирования САР становится неудовлетворительным вследствие изменения свойств объекта управления или из-за воздействия на объект управления возмущений. Это позволяет обеспечить устойчивость системы и повысить качество управления.

Работа адаптивной САР осуществляется следующим образом. При первоначальном запуске системы в работу в установившемся режиме ГПС подает в САР прямоугольный пробный импульс, амплитуда которого равна 1/10 от значения сигнала задания, а длительность составляет 175 с. После

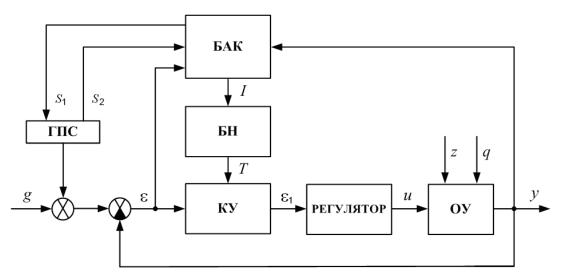



Рис. 3. Структурная схема САР

подачи пробного импульса в блоке БАК происходит подсчет оценки критерия качества системы за время длительности пробного импульса. Критерием качества системы является интегральный критерий, который имеет вид:

$$I_1 = \int_{t_1}^{t_2} |\varepsilon(t)| dt,$$

где  $\varepsilon$  — ошибка регулирования.

Подсчитанная оценка критерия качества запоминается в блоке БН в качестве эталонной оценки. Затем, через определенный промежуток времени, ГПС вновь подает в систему прямоугольный пробный импульс, после чего в БАК вновь происходит подсчет оценки критерия качества САР за время длительности пробного импульса. Далее текущая оценка критерия сравнивается с эталонной оценкой и по результату сравнения принимается решение о необходимости подстройки корректирующего устройства. Принятие решения основывается на анализе условия:

$$|I_t - I_0| > \Delta$$
,

где  $I_{t}$  — текущее, а  $I_{0}$  — эталонное значение критерия.

Величина  $\Delta$  характеризует допустимое отклонение качества CAP от эталонного.

Если принято решение о подстройке корректирующего устройства, то в блоке БН происходит расчет значения постоянной времени корректирующего устройства, после чего значение данного параметра поступает в КУ и запоминается в нем. Для определения постоянной времени в данной работе используется градиентный метод. Корректировка постоянной времени осуществляется с учетом зависимости:

$$T_i = T_{i-1} + \Delta T$$
,

где  $T_i, T_{i-1}$  — значения постоянной времени на текущем и предыдущем шагах,  $\Delta T$  — величина прирашения T.

Диапазон изменения постоянной времени корректирующего устройства определяется с учетом обеспечения устойчивости системы и требуемого качества переходных процессов.

Для исследования работы системы автоматического регулирования с адаптивным корректирующим устройством с амплитудным подавлением была составлена модель САР температуры углеводородного конденсата на выходе из кожухотрубного теплообменника в системе MatLab 6.5 (Simulink), представленная на рис. 4. На этом же рисунке приведена модель САР, не обладающая свойствами адаптации.

Начальные значения параметров объекта управления и ПИ-регулятора одинаковы (см. выше) и остаются неизменными в процессе работы системы.

Начальное значение постоянной времени корректирующего устройства принято равным 0,01 с. Значение параметра первоначальной настройки КУ выбрано таким, чтобы вносить минимальное изменение в частотные характеристики САР.

Изменение постоянной времени корректирующего устройства производится с помощью аппарата S-функций в блоке БН. Запуск ГПС также производится с помощью аппарата S-функций в блоке БАК.

На рис. 5 представлены кривые переходных процессов в системах регулирования только с ПИ-регулятором (кривая 1) и регулятором, дополненным последовательно включенным в цепь регу-

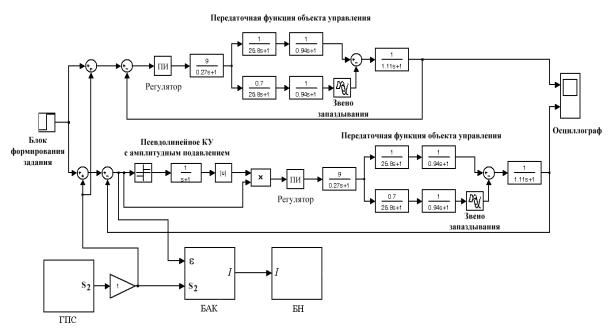



Рис. 4. Модель адаптивной САР температуры углеводородного конденсата на выходе из кожухотрубного теплообменника

лирования адаптивным псевдолинейным корректирующим устройством с амплитудным подавлением (кривая 2). Эти кривые наглядно иллюстрируют способность адаптации системы регулирования к изменению параметров объекта управления. Кривая 3 иллюстрирует импульсы, поступающие в САР с генератора пробного сигнала.

Изначально была проведена настройка ПИ-регуляторов обеих систем таким образом, чтобы переходный процесс при ступенчатом воздействии на объект управления удовлетворял требованиям по качеству, описанным выше.

Также была проведена настройка корректирующего устройства при T=0,01 с. При такой настройке оно вносит минимальное ослабление в вид амплитудно-частотной характеристики.

После запуска систем в работу и окончания переходных процессов, в момент времени  $t_1$ , в обе системы поступает импульс с генератора пробного сигнала (кривая 3). После подачи импульса в блоке БАК рассчитывается эталонная оценка критерия качества САР и запоминается в качестве эталонной оценки. В момент времени  $t_2$  происходит изменение постоянной времени  $T_2$  передаточной функции объекта управления с 25,8 до 17 с.

При таких параметрах объекта управления и начальных настройках  $\Pi$ И-регулятора переходный процесс на ступенчатое воздействие становится более колебательным, что видно из графиков при поступлении очередного импульса с  $\Gamma$ ПС в момент времени  $t_3$ . Далее происходит подсчет текущей оценки критерия качества CAP, сравнение её с эталонной оценкой, и по результату сравнения принимается решение о подстройке корректирующего

устройства. В момент времени  $t_4$  происходит изменение значения постоянной времени корректирующего устройства на величину приращения  $\Delta T$ , равную 15 с. После изменения постоянной времени КУ, её значение поступает в корректирующее устройство и запоминается в нем.

Далее, в момент времени  $t_5$ , в САР вновь подается пробный сигнал, и цикл подстройки повторяется. В момент времени  $t_9$  значение текущей оценки критерия качества САР становится удовлетворительным, и подстройка прекращается.

Для подстройки потребовалось три итерации. Значение постоянной времени корректирующего устройства после окончания процесса подстройки стало равным 45 с.

Вид кривой 2, в момент времени  $t_9$ , говорит о том, что качество САР с корректором (кривая 2) значительно лучше, чем без корректора (кривая 1) при изменившихся параметрах объекта управления и произошедшей подстройке к ним КУ. Качество работы САР с КУ остается удовлетворительным при изменении постоянной времени объекта до значения  $T_2$ =3 с, а при  $T_2$ =8 с система без корректора становится неустойчивой.

На основе модели (рис. 4) проведено исследование свойств адаптивной системы при изменении времени запаздывания теплообменника. Результаты исследования показали, что САР с адаптивным псевдолинейным корректирующим устройством с амплитудным подавлением остается устойчивой при увеличении времени запаздывания с 10 до 150 с. Для сравнения: в обычной системе происходит потеря устойчивости уже при времени запаздывания, равном 28 с.

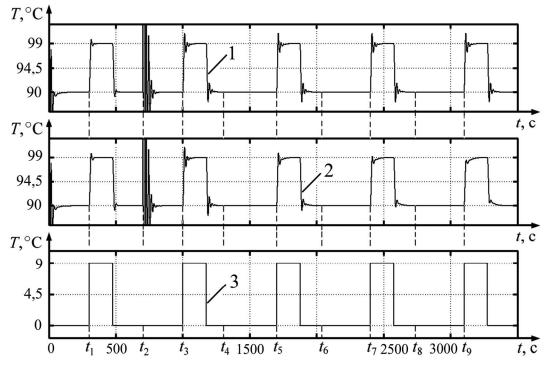



Рис. 5. Кривые переходных процессов

#### Выводы

1. Предложена адаптивная система регулирования температуры углеводородного конденсата на выходе из кожухотрубного теплообменника, включающая ПИ-регулятор и последовательное псевдолинейное корректирующее устройство динамических свойств систем автоматического регулирования.

## СПИСОК ЛИТЕРАТУРЫ

- Солдатов В.В., Ухаров П.Е. Адаптивная настройка систем управления с ПИД-регуляторами в условиях информационной неопределенности // Приборы и системы. Управление, контроль, диагностика. – 2004. – № 8. – С. 16–20.
- 2. Штейнберг Ш.Е., Залуцкий И.Е., Сережин Л.П., Варламов И.Г. Настройка и адаптация автоматических регуляторов. Инструментальный комплект программ // Промышленные АСУ и контроллеры. 2003. № 10. С. 43–47.
- Скороспешкин М.В. Адаптивные псевдолинейные корректоры динамических характеристик систем автоматического регу-

- 2. Экспериментально показана эффективность предложенной системы регулирования при изменении во времени параметров объекта управления.
- 3. Применение предложенного корректирующего устройства позволило реализовать систему регулирования объектами с нестационарными параметрами. Устройство можно добавлять в действующие системы регулирования на базе микропроцессоров без дополнительных затрат на аппаратную часть.
  - лирования // Известия Томского политехнического университета. -2006. Т. 309.  $\mathbb{N}_2$  7. С. 172-176.
- Скороспешкин М.В., Цапко Г.П. Адаптивный корректор динамических характеристик систем автоматического регулирования // Радиоэлектроника, электротехника и энергетика: Труды XII Междунар. научно-технич. конф. студентов и аспирантов. – Т. 1. – М.: МЭИ, 2006. – С. 498–499.

Поступила 01.04.2010 г.

УДК 669.162.28

# ТЕХНОЛОГИЯ И СРЕДСТВА РАЗРАБОТКИ ИНФОРМАЦИОННО-МОДЕЛИРУЮЩИХ СИСТЕМ ДЛЯ РЕШЕНИЯ ТЕХНОЛОГИЧЕСКИХ ЗАДАЧ В МЕТАЛЛУРГИИ

Н.А. Спирин, В.В. Лавров, А.А. Бурыкин, А.В. Краснобаев\*, А.Г. Быков

ГОУ ВПО «Уральский государственный технический университет — УПИ имени первого Президента России Б.Н. Ельцина», г. Екатеринбург \*ОАО «Магнитогорский металлургический комбинат», г. Магнитогорск E-mail: lv@tim.ustu.ru

Отражены технологические особенности и средства разработки программного обеспечения, использованные авторами в ходе создания современных информационно-моделирующих систем для решения технологических задач в области доменного производства, в частности решения задачи оптимального распределения топливно-энергетических ресурсов в группе доменных печей.

### Ключевые слова:

Технология разработки программного обеспечения, система поддержки принятия решений, доменная печь, технологические задачи в металлургии.

# Key words:

Software engineering, decision support systems, blast furnace, technological problems in metallurgy.

В настоящее время все более очевидной становится роль алгоритмов и компьютерных программ для решения комплекса технологических задач в области металлургии MES-уровня (Manufacturing Execution Systems — системы управления технологией, производственными процессами) современных автоматизированных информационных систем крупнейших металлургических предприятий России. Это определяет потребность в разработке специализированного программного обеспечения информационно-моделирующих систем, в основу которого положен комплекс математических моделей, учитывающих как физику процесса, основы

теории тепло- и массообмена, законы сохранения энергии, так и особенности влияния технологических и стандартных характеристик сырья на показатели производственного процесса. При этом важно обеспечить высокий уровень их интеграции с существующими производственными и корпоративными системами.

Значительную роль в успешном внедрении и использовании информационно-моделирующих систем играет качество разработанного программного обеспечения. Среди наиболее значимых показателей качества современных программных средств выделены функциональность, надежность,