Литература

- 1. Авербух А.Г., Трапезникова Н.А. Отражение и преломление плоских волн при нормальном падении на границу поглощающих сред // Изв. АН СССР. Физика Земли, 1972. №9. С. 74 83.
- 2. Иванченков В.П., Кочегуров А.И., Купина Н.И., Орлов О.В. Методы фазочастотного прослеживания отраженных волн и их применения в задачах обработки сейсмической информации // Технология сейсморазведки, 2013. №3. С. 5 10.
- 3. Иванченков В.П., Кочегуров А.И., Нгуен С. Х., Орлов О.В. Фазочастотный алгоритм прослеживания сейсмических сигналов с управляемой протяженностью функции качества // Научный вестник НГТУ, 2014. Т. 57. № 4. С. 59 68.
- 4. Иванченков В.П., Кочегуров А.И., Орлов О.В. Информационные свойства фазовых спектров сейсмических сигналов // Информационное общество, 2014. № 3. С. 34 45.
- 5. Крылов Д.Н. Детальный прогноз геологического разреза в сейсморазведке. М.: Недра, 2007. 195 с.
- 6. Нгуен С.Х., Сидоренко С.Н. Новый способ определения взаимного фазового спектра сейсмических сигналов при решении задач прогноза геологического разреза // Проблемы геологии и освоения недр: Труды XIX Международного симпозиума студентов, аспирантов и молодых ученых. Томск, 2015. Т.1. С. 269 271.

ЛИТОЛОГИЧЕСКИЕ ОСОБЕННОСТИ, ГЕНЕТИЧЕСКИЕ ПРИЗНАКИ И УСЛОВИЯ ФОРМИРОВАНИЯ ОТЛОЖЕНИЙ СИГОВСКОЙ СВИТЫ НА ПОЛЯРНОЙ ПЛОЩАДИ (КРАСНОЯРСКИЙ КРАЙ)

А.К. Сиязов, Н.М. Недоливко

Научный руководитель доцент Н.М. Недоливко

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Полярная площадь административно расположена в северо-западной части Туруханского района Красноярского края. Согласно нефтегазогеологическому районированию, она относится к Сидоровскому нефтегазоносному району Пур-Тазовской нефтегазоносной области — восточной окраины Западно-Сибирской нефтегазоносной провинции. Основным нефтегазоперспективным комплексом этой территории являются юрские терригенные отложения, представляющие «циклическое переслаивание преимущественно песчано-алевритовых и глинистых свит, одним из которых является сиговский нефтегазоперспективный объект» [2].

Скважина Полярная-1 (рис. 1) пробурена на одноименном локальном поднятии в слабо изученной бурением части Сидоровского мегавыступа. В результате испытаний средне-верхнеюрских отложений (пласты малышевской и сиговской свит) были получены притоки воды [1], но в связи с тем, что территория изучена бурением слабо, информация, полученная при изучении керна, извлеченного с больших глубин по условиям образования, геологическому строению, составу будет иметь важное практическое и научное значение.

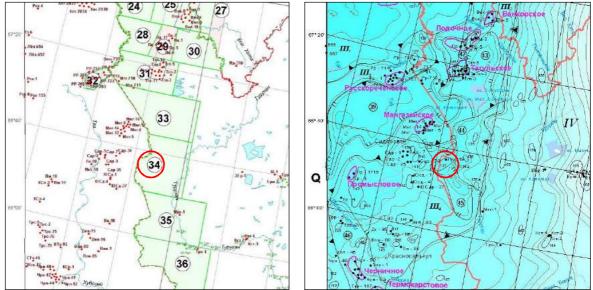


Рис. 1. Схема нефтегазогеологического районирования Западно-Сибирской нефтегазоносной провинции [1, 2]

Отложения сиговской свиты в разрезе Полярной площади залегают на глубинах $3197,5-3492\,$ м, толщина свиты в пределах изучаемого разреза составляет $294,5\,$ м. Стратиграфически свита приурочена к средне-позднеюрским отложениям (J_2k_3 - J_3km_2), подстилается регионально выдержанным глинистым репером – точинской свитой (J_2k_2 - J_3), перекрывается регионально выдержанным глинистым репером – яновстанской свитой (J_3km_2 - J_3t - K_1b_1). По особенностям строения в разрезе отчетливо выделяется три части: нижняя (J_3km_2 - J_3t -

переслаивание алевролитов и глинистых пород с редкими маломощными прослоями алевропесчаников; верхняя $(3260-3197,5\,$ м) — преимущественно песчаная: с переслаиванием $(3260-3222\,$ м) песчаников, алевролитов и глинистых пород в различных соотношениях и песчаная $(3222-3197,5\,$ м) с пластами Cr_4-Cr_1 и прослоями алевролитов и глин.

Объектом исследования послужили отложения нижней и средней частей разреза (3445–3370 м), из которых проводился отбор кернового материала.

Песчаные породы представлены светло-серыми, средне- и мелкозернистыми разностями, однородными и слоистыми. Слоистость в них редкая и частая, сплошная и прерывистая.

По морфологии она прямолинейная и волнистая, одно- и разнонаправленная, отражающая возвратнопоступательный и волновой характер движения водной среды. Границы между слойками неровные и размытые. В песчаниках постоянно отмечаются интракласты — свидетели перерывов в осадконакоплении, размыва и переотложения ранее сформированных пород, что связано с периодичным усилением динамической активности вод. Слоистость часто нарушается следами жизнедеятельности донных животных: встречаются следы прикрепления, сверления, ходы, норки и интенсивная биотурбация с присутствием разнообразных типов ихнофоссилий (Skolithos, Terebelina, Monocraterion). Кроме того, в песчаниках встречаются остатки двустворчатых раковин и белемнитов.

Алевролиты преимущественно светло-серые с полого-наклонной, волнистой, косой одно- и разнонаправленной прямолинейной, часто со срезанием слойков, иногда горизонтальной слоистостью за счет послойных намывов растительного детрита, слюды и глинистого материала на плоскостях наслоения.

Глинистые породы представлены темно-серыми разновидностями. Развита пологоволнистая, близкая к горизонтальной, участками горизонтальная и волнисто-линзовидная слоистость. Она образована чередованием более светлого и более темного глинистого материала, иногда содержащего алевритовую примесь. Зачастую породы биотурбированы и содержат ихнофоссилии типа Chondrites и Palaeophycus. Повсеместно в них встречается рассеянный пирит, многочисленные мелкие и крупные (до 1 см) конкреции пирита.

Смена ихнофоссилий снизу вверх по разрезу в совокупности с вмещающими их осадками отражают меняющиеся условия: от относительно глубоководных с низкой энергией водной среды (тип Chondrites, менее Palaeophycus) до умеренно-активной в мелководных зонах сублиторали и в предфронтальной зоне пляжа (биотурбация типа Skolithos, Terebelina) (рис. 2). Наблюдаются остатки морской фауны: ростры белемнитов, раковины пелеципод. Присутствуют обильная пиритизация и карбонатизация: кальцитовые цементы и сидеритовые конкреции.

Рис. 2. Особенности пород сиговской свиты

В целом указанные особенности однозначно свидетельствуют, что накопление осадков сиговской свиты связано с морским бассейном и осуществлялось в пределах прибрежной полосы моря. Этот вывод согласуется с выводом Б.Н. Шурыгина и др. [3] о формировании отложений в пределах мелководного шельфа.

Песчаные отложения, залегающие в нижней части толщи, накапливались на прибрежном шельфе в постройках барового типа.

Существенно алевритоглинистые отложения накапливались в мелководной зоне сублиторали с умеренно активным гидродинамическим режимом (отложения со следами жизнедеятельности) и в относительно

глубоких зонах внешней части шельфа (существено глинистый состав, тонкая горизонтальная слоистость в сочетании с волнистой, биотурбация типа Chondrites, остатки фораминифер и иглокожих).

Литература

- 1. Карогодин Ю.Н., Климов С.В., Храмов М.Ф. Новый верхнеюрский нефтегазоносный комплекс Западной Сибири (Системно-литмологический аспект) // Нефтегазовая геология, 2011. № 2 (6). С. 69 73.
- 2. Карпухин С.М. Перспективные объекты Сидоровского нефтегазоносного района // Нефтегазовая геология, 2012. № 1 (9). С. 32 38.
- 3. Стратиграфия нефтегазоносных бассейнов Сибири. Юрская система / Б.Н. Шурыгин, Б.Л. Никитенко, В.П. Девятов и др. Новосибирск: Изд-во СО РАН, филиал "Гео", 2000. 480 с.

ПОИСК И РАЗВЕДКА ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ В ВЕРХНЕЙ ЮРЕ ЗАПАДНОЙ СИБИРИ С ИСПОЛЬЗОВАНИЕМ ФАЦИАЛЬНОЙ ИНТЕРПРЕТАЦИИ МАТЕРИАЛОВ ГИС А.О. Суворов

Научный руководитель доцент В.А. Казаненков Новосибирский государственный университет, г. Новосибирск, Россия

В административно-территориальном отношении изучаемый район приурочен к восточной части Нефтеюганского, центральной части Сургутского и западной части Нижневартовского муниципальных районов ХМАО и занимает территорию, площадью около 15 тыс. км². В тектоническом плане он расположен в зоне сочленения Юганской мегавпадины и Нижневартовского свода, и, согласно схеме нефтегазогеологического районирования Западно-Сибирской провинции, составленной в 60-х годах прошлого века специалистами научных и производственных геологических предприятий, уточненной в 2003 г. коллективом сотрудников ИНГГ СО РАН им. А.А. Трофимука, территория исследования входит в состав Вартовского и Сургутского нефтегазоносных районов Среднеобской нефтегазоносной области и Демьянского нефтегазоносного района Каймысовской НГО. Основными промышленными объектами в пределах изучаемой территории являются залежи в отложениях верхневасюганской подсвиты, за исключением месторождений Демьянского НГР, где основным промышленным объектом является среднеюрский НГК.

Первые геологоразведочные работы на нефть и газ на исследуемой территории проводились в 50-60-х годах прошлого века. Они включали выполнение гравиметрической и аэромагнитной съемки разного масштаба, электроразведку различными методами, профилей сейсморазведки методом МОВ в комплексе с бурением колонковых скважин вдоль р. Большой Юган и его притоков. В 1951 г. маршрутным сейсмопрофилированием был выявлен крупный тектонический элемент – Нижневартовский свод.

Основной этап изучения территории исследования начался с 1961 г., когда на Мегионской площади был получен первый мощный фонтан нефти из нижнемеловых отложений, что подтвердило высокую перспективность Юганского Приобья на нефть и газ.

Всего в верхней юре открыто 19 залежей, которые сконцентрированы главным образом в зоне сочленения Нижневартовского свода и Юганской мегавпалины.

На территории исследования находятся 40 месторождений, где основным промышленным объектом является горизонт $Ю_1$ верхнеюрского НГК.

В зоне сочленения Нижневартовского свода и Юганской мегавпадины наиболее крупные скопления нефти сформировались в оксфордском резервуаре. Это обусловлено благоприятным сочетанием трех факторов: наличием антиклинальных структур, наличием песчаных пластов группы Ю₁, способных аккумулировать углеводороды, и наличием перекрывающих их карбонатно-кремнисто-глинистых пород баженовской свиты, которые одновременно являются и флюидоупором и нефтепроизводящей толщей. Современное состояние геолого-геофизической изученности исследуемой территории свидетельствует о том, что фонд традиционных антиклинальных нефтеперспективных объектов практически исчерпан. Поэтому для изучаемой территории прогноз зон, в пределах которых могут быть выявлены неантиклинальные ловушки с развитием улучшенных коллекторов, предопределяет актуальность исследований.

По результатам анализа геолого-геофизических материалов, основанного на работах Белозерова В.Б. [2, 3] и Конторовича А.Э. [4], на исследуемой территории были выделены два основных типа фациальных комплексов:

Дельтовый, включающий в себя обстановки дельтовой равнины (с субобстановками флювиального дельтового рукава, намывного вала, устьевого бара дельтового рукава, маршей) и авандельты (с субобстановками продельты).

Прибрежно-морской с обстановками пляжа и его предфронтальной части, с субобстановками нижнего пляжа и береговых подводных валов.

Согласно представлениям А.Э. Конторовича с соавторами [4], было установлено, что зона сочленения Нижневартовского свода и Юганской мегавпадины в оксфордском веке находилась в пределах зоны моря глубиной менее 25 м, которая занимала обширную территорию площадью 1040 тыс. κm^2 в центральной и восточной частях Западно-Сибирского бассейна седиментации и очень узкую полосу вдоль западного обрамления синеклизы. В этих обстановках накапливались глинисто-алеврито-песчаные осадки верхневасюганской подсвиты. В ее составе развиты песчаные пласты 10^{13-4} и 10^{1-2} . Они сложены