На правах рукописи

Гаранин Георгий Викторович

УЛЬТРАЗВУКОВОЙ СТЕНД КОНТРОЛЯ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ МЕТАЛЛОВ И СПЛАВОВ (НА ПРИМЕРЕ СИСТЕМЫ ТИТАН-ВОДОРОД)

Специальность 05.11.13 – «Приборы и методы контроля природной среды, веществ, материалов и изделий»

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук

Томск – 2016

Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский Томский политехнический университет» (ФГАОУ ВО НИ ТПУ)

Научный руководитель: кандидат физико-математических наук, доцент, заведующий кафедрой общей физики **Лидер Андрей Маркович**

Официальные оппоненты: Клопотов Анатолий Анатольевич, доктор физико-математических профессор, наук, Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный архитектурно-строительный университет», профессор кафедры «Прикладной механики и материаловедения»

> Кербель Борис Моисеевич, доктор технических наук, профессор, Северский технологический институт - филиал федерального государственного автономного образовательного учреждения профессионального образования высшего исследовательский ядерный «Национальный кафедры университет «МИФИ», профессор «Электроника физических автоматика И установок»

Ведущая организация: ФГБОУ ВПО «Нижегородский государственный технический университет им. Р.Е. Алексеева»

Защита состоится «29» марта 2016 года в 17:00 на заседании диссертационного совета Д 212.269.09 при ФГАОУ ВО «Национальный исследовательский Томский политехнический университет», по адресу: 634028, г. Томск, ул. Савиных, 7, ауд. 215.

С диссертацией можно ознакомиться в библиотеке ФГАОУ ВО «Национальный исследовательский Томский политехнический университет» по адресу: 634034, г. Томск, ул. Белинского, 55 и на сайте: <u>http://portal.tpu.ru/council/916/worklist</u>

Автореферат разослан « 5 » февраля 2016 г.

Ученый секретарь диссертационного совета к.т.н., доцент

Bu

Васендина Е.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы.

Создание новых технологий и производств требует применения конструкционных материалов, стойких к агрессивным средам. Традиционно большой интерес в этом плане представляет титан и его сплавы.

Применение титана как конструкционного материала в различных отраслях промышленности обусловлено благоприятным сочетанием его высокой механической прочности, коррозионной стойкости, жаропрочности и малой плотности. При эксплуатации изделий из титана и его сплавов в условиях контакта с водородсодержащими средами (водяной пар. углеводородные соединения) в них проникает водород, что приводит к способствует раннему охрупчиванию материалов И возникновению макротрещин и деградации механических характеристик при их эксплуатации.

Нерешенные до настоящего времени проблемы ухудшения свойств металлов, содержащих водород, с одной стороны, и повышение роли водорода для решения технических задач, получения материалов с заданными помощью водородной обработки свойствами с С другой. вызывают необходимость разработки новых и усовершенствования известных методов анализа водорода и дефектов, внесенных при наводороживании. Это важно для химической промышленности, нефтегазовой отрасли и ядерной энергетики. Разработка и освоение этих методов позволит отслеживать техническое состояние конструкций И оборудования, контактирующих С водородсодержащими средами, контролировать их соответствие механическим и прочностным параметрам, и прогнозировать время их отказа и разрушения, что делает актуальным поиск метода неразрушающего контроля, позволяющего решить эти задачи.

Перспективность применения акустических методов ДЛЯ контроля физико-механических свойств металлов и сплавов, исследования систем металл-водород была показана в работах широкого круга авторов: И.А. Викторов, А.А. Ботаки, В.Л. Ульянов, Т. Gomez Alvarez-Arenas, И.М. Полетика, P.M. Gomes, Chunjie Ye, Yebo Lu, A. Bleuze, S. Hirsekorn, B.B. Муравьев, Л.Б. Зуев, И.П. Чернов, Ю.П. Черданцев, А.М. Лидер, В.В. Ларионов, Che-Hua Yang, Z. Cherrouf, S.I. Kwun и др. Дальнейшее развитие ультразвуковых методов контроля свойств и характеристик материалов направленно в области применения многоэлементных преобразователей, совершенствования методов ультразвуковой томографии, что ставит задачи по уточнению значений акустических параметров контролируемых материалов, определению поверхностной И объемной неоднородностей распределения значений акустических параметров материалов.

Таким образом, ДЛЯ исследования систем металл-водород ультразвуковыми контроля необходима разработка методами экспериментального оборудования и методик, позволяющих высокой С точностью определять параметры распространения упругих волн в металлах и сплавах при их насыщении водородом.

<u>Целью настоящей работы</u> являлась разработка аппаратной и методической частей ультразвукового стенда для контроля параметров распространения рэлеевских волн в системах металл-водород.

Для достижения поставленной цели необходимо было решить следующие <u>основные задачи</u>:

- 1. Разработать и реализовать ультразвуковой стенд для исследования и контроля процесса водородного охрупчивания в металлах и сплавах.
- 2. Провести экспериментальные исследования с применением разработанного стенда по контролю параметров распространения рэлеевской волны в системе металл-водород.
- 3. Определить зависимости параметров распространения рэлеевской волны от содержания водорода на примере титанового сплава BT1-0, насыщенного водородом из газовой среды.

Положения, выносимые на защиту

- 1. Ультразвуковой стенд для исследования и контроля процесса водородного охрупчивания в металлах и сплавах, позволяющий проводить комплексное определение параметров распространения рэлеевской волны.
- 2. Результаты исследования образцов из титанового сплава ВТ1-0, исходных и насыщенных водородом из газовой среды при температуре 873 К до концентраций в диапазоне (0,002 0,5) мас.%.
- 3. Способ неразрушающего определения содержания водорода в титановом сплаве BT1-0.
- 4. Способ идентификации водородного охрупчивания сплавов на основе титана.

<u>Научная новизна</u> диссертационной работы заключается в том, что впервые:

- на основе современной приборной базы разработана и реализована установка акустического контроля с высокоточной системой позиционирования датчиков и образца;
- изучены закономерности влияния водорода на параметры распространения рэлеевской волны в титановом сплаве BT1-0;

- разработан способ контроля содержания водорода в сплавах на основе титана по изменению скорости распространения рэлеевской волны.

Практическая значимость работы состоит в том, что разработанный ультразвуковой стенд применим для проведения высокоточных измерений и исследования металлов и сплавов. Результаты экспериментального исследования параметров распространения рэлеевской волны в титановом сплаве ВТ1-0 с различным содержанием водорода являются основой для разработки неразрушающих методов контроля систем металл-водород и дефектов водородного происхождения.

Результаты работы внедрены в Международной научно-образовательной лаборатории неразрушающего контроля, а также в учебный процесс кафедры общей физики Национального исследовательского Томского политехнического университета.

Практическая значимость подтверждается выполнением автором в качестве соисполнителя следующих научно-исследовательских работ, посвященных разработке и применению метода ультразвукового неразрушающего контроля водородного охрупчивания в металлах и сплавах:

1. Грант по постановлению Правительства РФ от 09.04.2010 № 220. научных исследований _ «Неразрушающий Направление контроль И производственной сфере» (2010-2013 гг.). Логовор № диагностика В 11.G34.31.0002 от 30 ноября 2010 г.

2. Государственное задание «Наука» Министерство образования и науки Российской Федерации, тема № 0.1146.2013

3. ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технического комплекса России на 2014-2020 годы» - Разработка технологии диагностики и оценки остаточного ресурса контейнеров с отработавшим ядерным топливом на базе метода ультразвуковой томографии, соглашение о предоставлении субсидии от «27» июня 2014 г. № 14.575.21.0048, уникальный идентификатор проекта RFMEFI57514X0048.

Достоверность полученных в работе результатов обеспечивается корректностью постановки решаемых задач и их физической обоснованностью, применением комплексного подхода и современной приборной базы при ультразвукового контроля, большим объемом создании стенда экспериментальных данных и корректностью их обработки с использованием современного программного вычислительной техники И обеспечения, непротиворечивостью данных, полученных в исследовательской части работы с результатами, полученными другими исследователями (там, где таковые имеются).

<u>Личный вклад автора</u> заключается в участии в постановке задачи, разработке и реализации схемы ультразвукового стенда для контроля водородного охрупчивания в системах металл-водород, а также в проведении большинства экспериментальных исследований, обработке полученных результатов и их анализе.

<u>Апробация работы и публикации</u>: материалы диссертации были представлены на всероссийских и международных конференциях и симпозиумах: Международная конференция по физической мезомеханике, компьютерному конструированию и разработке новых материалов, Томск, 2006; XXXIX Международная конференция по физике взаимодействия заряженных частиц с кристаллами, Москва, 2009; International Congress on Energie Fluxes and Radiation Effects, Томск, 2014.

Результаты диссертационной работы опубликованы в 4 статьях в журналах из списка ВАК, в 4 статьях в не рецензируемых журналах, а также в 7 сборниках трудов и материалов российских и международных конференций, получен 1 патент РФ.

<u>Объем и структура работы</u>: диссертационная работа состоит из введения, трёх глав, заключения, двух приложений и списка используемой литературы. Общий объем диссертации 126 страниц, включая 45 рисунков, 11 таблиц и список литературы из 129 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулированы цели и задачи исследования, научная новизна и практическая значимость полученных результатов. Представлены основные положения, выносимые на защиту.

В первой главе рассмотрены вопросы взаимодействия титана и его сплавов с водородом, приведены закономерности описывающие систему титанводород, описано явление водородной хрупкости, его механизмы, и влияние водорода на физико-механические характеристики титановых сплавов.

Рассмотрены акустические методы неразрушающего контроля, приведены физические основы и закономерности распространения упругих волн в твердом теле. Приведено описание поверхностных рэлеевских волн, представлены особенности их распространения, способы их возбуждения и приема, способы их применения для решения задач неразрушающего контроля физикомеханических свойств металлов и сплавов.

На основании проведенного обзора литературных источников представлено современное состояние вопроса применения поверхностных рэлеевских волн для контроля систем металл-водород и водородного охрупчивания в металлах. Представленный обзор работ позволяет сделать вывод о том, что задача разработки методов контроля содержания водорода в широкой номенклатуре металлов, в общем, и в титане и его сплавах в частности, не смотря на большой объем уже полученных разными авторами экспериментальных результатов, является в настоящий момент актуальной.

Очевидными направлениями развития ультразвуковых методов контроля физических свойств материалов являются: повышение точности измерения параметров распространения ультразвуковой волны – скорости и коэффициента затухания. Совершенствование ультразвуковых методов контроля в рамках применения их к проблеме водородного охрупчивания позволит изучить стадийность взаимодействия водорода с металлами, особенно на начальной стадии образования гидридов при малых концентрациях водорода, и разработать неразрушающий метод контроля водородного охрупчивания в металлах и сплавах.

Во второй главе представлены результаты разработки ультразвукового стенда и реализации на стенде методик измерения скорости распространения рэлеевской волны и измерения коэффициента затухания рэлеевской волны.

На основании проведенного обзора работ по применению акустических неразрушающих методов контроля для исследования влияния водорода на физико-механические свойства металлов и сплавов, был разработан и собран ультразвуковой стенд контроля, предназначенный для измерения скорости распространения (методом автоциркуляции) и коэффициента затухания ультразвуковой рэлеевской волны в металлах и сплавах. Знание величины этих параметров твердого тела позволяет определить значения упругих модулей, оценить величину внутренних напряжений, а также, при сканировании датчиком поверхности образца, изучить неоднородность распределения этих параметров. Применение рэлеевских волн обусловлено их особенностями: возможностью «вывести» акустический сигнал из любой точки поверхности образца, по которому распространяется волна; относительно большой концентрацией энергии в волне вследствие малости слоя локализации волны.

Значение скорости распространения рэлеевской волны в образце определяется разностным методом, основывающемся на измерении частоты автоциркуляции при различных значениях базового расстояния между излучателем и детектором рэлеевской волны. При изучении неоднородностей распределения физико-механических свойств в материале осуществляется сканирование образца датчиком с постоянным базовым расстоянием, при этом пропорциональной мерой скорости распространения поверхностных упругих колебаний является частота автоциркуляции. Эта величина хотя и не дает абсолютное значение скорости звука, но является удобным инструментом при относительных измерениях.

Стенд состоит из отдельных приборов, подключаемых по схеме, необходимой для проведения измерения выбранного параметра. В стенде используются импульсный генератор Tabor Model 8500. цифровой запоминающий TDS2024B, осциллограф Tektronix частотомер ЧЗ-85/3, генератор сигналов специальной формы Agilent 33250A; двухкоординатная система позиционирования датчиков и образца на основе позиционеров Standa 8МТ175, контроллера PCI-7334 и драйвера шаговых двигателей MID-7602 фирмы National Instruments. Все приборы соединяются по интерфейсам RS232 и USB к персональному компьютеру, и снабжены программным обеспечением, позволяющим автоматизировать управление стендом и проведение измерений.

Структурная схема ультразвукового стенда в конфигурации для измерения скорости распространения рэлеевской волны приведена на рисунке 1.

Работа стенда реализована по следующему алгоритму: генератор

Рисунок 1 – Структурная схема стенда измерения скорости ультразвука

Обозначения: $l_{\rm Д}$ – расстояние между излучателем и приемником, И – излучатель, П – при-емник, У – широкополосный усилитель, К – компаратор, О – одновибратор, Ч – часто-томер, БС _ блок синхронизации, БЗ – блок задержки, ΓИ импульсный ЦЗО цифровой генератор, запоминающий осциллограф.

импульсов формирует ИМпульс, который через преобразователь-излучатель B03буждает в образце рэлеевскую Возбужденный волну. импульс распространяется по регистрируется образцу И приемником. Контроль параметров регистрируемого имобеспечивается пульса С цифрового помощью осциллографа. Далее импульс усиливается широкополосным усилителем, компаратор по заданному порогу срабатывания формирует логический сигнал, который запускает одновибратор для

формирования синхронизирующего импульса заданной длительности. Импульс с выхода одновибратора подается на измерительный вход частотомера и на синхронизирующий вход генератора импульсов, замыкая тем самым петлю обратной связи генератора. Частота импульсов с выхода одновибратора, мерой скорости измеренная частотомером, является распространения рэлеевской волны В образце. Изображения осциллограмм сигналов ультразвукового стенда контроля в режиме измерения скорости ультразвука представлены на рисунке 2. На осциллограммах сигнала с выхода приемного пьезопреобразователя с задержкой равной $t_{3A/7} = 0$ мкс и $t_{3A/7} = 4$ мкс показано, что введение задержки возбуждающего импульса относительно запускающего импульса, устраняет влияние помехи от возбуждающего импульса на работу приемного тракта стенда, что улучшает стабильность работы входного широкополосного усилителя и компаратора, и повышает точность измерения частоты автоциркуляции.

Для управления системой позиционирования ультразвукового стенда контроля в среде LabView было разработано управляющее программное обеспечение, которое обеспечивает функционирование системы высокоточного позиционирования датчиков и образца. Система позиционирования датчиков и образца имеет два канала, первый используется для перемещения исследуемого образца вдоль датчиков, второй – для изменения расстояния между датчиками. При измерении частоты автоциркуляции получаемая с частотомера Ч3-85/3 информация обрабатывается и записывается в файл вместе с координатами положения позиционеров.

При определении скорости распространения рэлеевской волны в образце методом автоциркуляции, измеряемым параметром является частота автоциркуляции, которая зависит от времени распространения сигнала по образцу и по цепям обратной связи, что можно выразить соотношением:

$$f_{II} = \frac{1}{t_{3AII} + t_{AII} + t_{OEP}}$$
(1)

где: $t_{3AД}$ – время задержки возбуждающего импульса относительно запускающего импульса; $t_{A\Pi}$ – время задержки сигнала, определяющееся используемой аппаратурой; t_{OEP} – время распространения рэлеевской волны в образце. Измерив частоту автоциркуляции, и определив параметры аппаратуры можно определить время распространения рэлеевской волны в образце; зная $l_{Д}$ –

базовое расстояние между излучателем и приемником датчика и выражая через частоту автоциркуляции, получим выражение для определения скорости звука:

$$V_{PB} = \frac{l_{\mathcal{A}}}{\frac{1}{f_{\mathcal{U}}} - (t_{3A\mathcal{A}} + t_{A\Pi})} = \frac{l_{\mathcal{A}}f_{\mathcal{U}}}{1 - (t_{3A\mathcal{A}} + t_{A\Pi}) \cdot f_{\mathcal{U}}}$$
(2)

Для двух различных величин $l_{\mathcal{I}}$ для одного и того же образца, исходя из (2) можно записать систему уравнений:

$$\begin{cases} V_{PB} \left(\frac{1}{f_{\mathcal{U}_{-1}}} - (t_{3A\mathcal{I}} + t_{A\Pi}) \right) = l_{\mathcal{I}_{-1}} \\ V_{PB} \left(\frac{1}{f_{\mathcal{U}_{-2}}} - (t_{3A\mathcal{I}} + t_{A\Pi}) \right) = l_{\mathcal{I}_{-2}} \end{cases}$$
(3)

Учитывая, что для измерительного стенда, заданных параметров его настройки, датчика и исследуемого образца величины $t_{3AД}$, $t_{A\Pi}$ и V_{PB} можно считать постоянными, приходим к соотношению:

$$V_{PB} = \frac{l_{\mathcal{A}_{-1}} - l_{\mathcal{A}_{-2}}}{\frac{1}{f_{\mathcal{A}_{-1}}} - \frac{1}{f_{\mathcal{A}_{-2}}}}$$
(4)

В приведенном выражении в качестве параметров присутствуют только базовые длины датчика и частоты автоциркуляции для этих длин. Частота автоциркуляции может быть измерена достаточно точно (относительная погрешность измерения частоты составляет 10^{-6}), а значит, в погрешность определения значения V_{PB} основной вклад вносит погрешность измерения базовой длины датчика.

Для оценки погрешности измерения скорости рэлеевской волны, была проведена серия измерений с использованием образца из нержавеющей стали 12Х18Н10Т, подвергнутого отжигу при температуре 850 °C в течение 3 часов. Размер образца составил 100х8х2 мм³. Частота возбуждаемой рэлеевской волны в образце составляла 5 МГц, начальное расстояние между датчиками – 18,5 мм, шаг приращения расстояния между датчиками – 5 мм, количество точек

Рисунок 3 – График зависимости расстояния между датчиками от величины обратной частоты автоциркуляции.

измерения – 11.

На рисунке 3 приведена зависимость расстояния между датчиками OT величины обратной частоты автоциркуляции. По экспериментальным точкам проведена линейная аппроксимация (\mathbf{R}^2) 1). скорость распространения рэлеевской волны в образце равна 2930,0±0,7 м/с. Для оценки случайной ошибки В серии измерений проводилось 10-ти кратное измерение скорости

рэлеевской волны в образце. Значение скорости рэлеевской волны в образце для серии из 10-ти измерений составило 2929,9±0,9 м/с для доверительной вероятности 0,95; приборная погрешность, для расстояния между датчиками l = 0,055 м, погрешности позиционирования датчиков $\Delta l = 2,5 \cdot 10^{-6}$ м, погрешности измерения частоты частотомером $\Delta f = 0,06$ Гц, составила 0,13 м/с. Основной вклад в приборную погрешность вносит погрешность определения расстояния между датчиками, зависимость приборной погрешности от этого параметра (рисунок 4).

Полная абсолютная погрешизмерения скорости ность рэлеевской волны составила 0,9 м/с, относительная погрешность в данном случае равна 0,03 %. Достигнутое на ультразвуковом стенде значение погрешности определения скорости распрорэлеевской странения волны обеспечивает достаточную для решения поставленной задачи точность измерений.

Для измерения затухания рэлеевской волны используется конфигурация ультразвукового на рисунке 5

стенда, структурная схема которой приведена на рисунке 5.

Генератор сигнала специальной формы Agilent 33250A используется как источник синусоидального напряжения с регулируемой частотой, которая устанавливается равной резонансной пьезоэлектрических частоте преобразователей излучателя и приемника рэлеевской Цифровой волны. запоминающий осциллограф **TDS2024B** используется для измерения отношения амплитуды напряжения сигнала на излучателе к амплитуде

Рисунок 5 – Структурная схема установки измерения затухания рэлеевской волны. Обозначения: $l_{\rm I}$ – базовое расстояние между излучателем и приемником, И – излучатель, П – приемник ГСС – генератор сигналов специальной формы, ЦЗО – цифровой запоминающий осциллограф.

напряжения на приемнике рэлеевской волны.

Для плоской волны, распространяющейся в положительном направлении оси *X*, можно записать:

 $u(x,t) = Ue^{-\alpha x}e^{i\omega(t-\frac{x}{c})}$ (5) где *t* - время; $\omega=2\pi f$ - круговая частота колебаний; *c* - скорость звука в материале; *u*, *U*- текущее и амплитудное значения смещения частиц среды.

Для большинства металлов и сплавов коэффициент затухания ультразвуковых волн является малой

10

расстояний Δx 100 величиной, поэтому при порядке В 10 MM наблюдать экспериментально удается только малую часть спадающей экспоненциальной огибающей. случае, угловой коэффициент B ЭТОМ касательной, проведенной к огибающей через начальную точку кривой, равен с обратным знаком коэффициенту затухания: $\alpha = -k$.

Измерения коэффициента затухания проводились с применением датчиков с резонансной частотой 5 МГц. Генератор настраивался на возбуждение сигнала в виде пакета состоящего из 7 периодов синусоидальных колебаний

Рисунок 6 – Изображение измеряемого сигнала на экране осциллографа

частотой 5 МГц, количество периодов колебаний в пакете импульсов подбиралось до достижения стабильной максимальной амплитуды приемном пьезона преобразователе. Амплитуда возбуждающих импульсов составляла 10 В, частота повторения пакета импульсов – 1 кГц. Амплитуда сигнала на приемном преобразователе измерялась от пика до пика цифровым осциллографом в режиме усреднения по 64 измерениям (рисунок 6).

Измерения коэффициента затухания проводились с изменением расстояния между датчиками от 17 до 27 мм с шагом 0,5 мм, и измерением амплитуды регистрируемого сигнала в каждой точке. Далее, как показано на рисунке 7, определялась зависимость нормированного значения амплитуды регистрируемого сигнала от расстояния между датчиками.

Проблема оценки приборной погрешности в приложении к измерению коэффициента затухания импульсным методом и контактным возбуждением

Рисунок 7 –Зависимость нормированного значения амплитуды регистрируемого сигнала от расстояния между датчиками

ультразвуковой волны в исследуемом объекте сопряжена трудностями определения С величины вклада потерь ультразвукового сигнала В пьезопреобразователе, местах склейки его c призмой, В области контакта С прозвучиваемым объектом и т.д.

Одним из способов решить данную проблему является рандомизация, что позволяет исключить большую часть систематических ошибок, учитывая их как составляющие случайной погрешности.

Для различных экспериментальных установок схожих по методам измерений и принципам действия, согласно литературным данным, величина

погрешности определения коэффициента затухания составляет от единиц до десятков процентов.

Основные особенности разработанного ультразвукового стенда контроля:

1. комплексное объединение методик измерения скорости и коэффициента затухания рэлеевской волны;

2. высокая степень автоматизации при проведении измерений;

3. применение в составе стенда приборов с широкими диапазонами измерения позволяет измерять акустические параметры различных материалов.

Достигнутые на практике характеристики стенда соответствуют решаемым задачам, и требованиям, предъявляемым к экспериментальным установкам для исследования влияния водорода на физико-механические свойства металлов и сплавов.

В третьей главе приведены результаты использования ультразвукового контроля для исследования влияния водорода на параметры стенда распространения рэлеевской волны в титановом сплаве BT1-0. Для проведения экспериментальных исследований были подготовлены образцы из титана ВТ1-0, вырезанные методом электроэрозионной резки вдоль направления проката исходного листа, имеющие форму двухсторонней лопатки с размером рабочей части (шейки) 30х8 мм; толщина образцов составляла 2 мм. Форма и размеры образцов выбирались с учетом возможностей и особенностей серии использовавшегося в данной работе при подготовке образцов и проведении измерений оборудования.

Выбор в качестве материала для исследований титанового сплава BT1-0, который по составу является технически чистым титаном с нормируемым содержанием примесей, обуславливается тем, что данный сплав является однофазным, а основной элемент состава сплава – титан – является гидридообразующим элементом, что позволяет использовать его в качестве эффективного модельного материала при изучении процессов водородного охрупчивания.

После изготовления и очистки поверхности, исходные образцы были подвергнуты отжигу в вакууме в течение одного часа при температуре 750 °C с последующим охлаждением в печи для снятия внутренних напряжений.

Насыщение водородом образцов из титана ВТ1-0 было проведено на установке Gas Reaction Controller фирмы Advanced Materials Corporation, по методу Сивертса. Для получения водорода использовался генератор водорода НуGen 200 производства фирмы Claind, обеспечивающий чистоту водорода > 99,9995 %.

Интегральное содержание водорода (в мас.%) в образцах определялось массовым методом по соотношению:

$$n = \frac{m_{o\delta p+\mathrm{H}_2} - m_{o\delta p}}{m_{o\delta p}}, \qquad (6)$$

где: *m*_{обр} - масса исходного образца, *m*_{обр+H₂} - масса наводороженного образца.

Для взвешивания использовались весы ГОСМЕТР ВЛ-210 с погрешностью

измерения массы $\pm 0,1$ мг. Средняя масса исходных образцов составила 6,2 г; относительная погрешность определения интегрального содержания водорода в образцах массовым методом зависит от количества введенного в образец водорода, и уменьшается от 30 % для концентрации водорода 0,005 мас.% до 0,6 % для концентрации водорода 0,273 мас.%.

Для исходных и наводороженных образцов был проведен металлографический анализ. Этапы металлографической подготовки включали в себя: механическую шлифовку, полировку и химическое травление.

Микроскопическое исследование поверхности образцов проводилось с применением оснащенного цифровой камерой оптического микроскопа МЕТАМ ЛВ-31, с целью изучения влияния насыщения водородом на микроструктуру титана ВТ 1-0.

Размеры зерен, определенные методом секущей для исследуемого материала составили 50 – 100 мкм. Зерна равномерно распределены ПО поверхности, выраженной текстуры проката, В виде вытянутых И ориентированных в одном направлении зерен, не наблюдается. На рисунках 8 и 9 приведены фотографии поверхности образцов с различным содержанием водорода, полученные при увеличении x160 и x400 соответственно.

С увеличением концентрации водорода в образцах наблюдается образование гидридных включений в виде тонких пластин. Начиная с концентрации введенного водорода 0,005 мас. % гидридные включения, в виде пластин с длиной по профилю не более 10 мкм, наблюдаются в отдельных кристаллитах. Для содержания водорода 0,01 мас.% длина гидридных пластин увеличивается, но при этом она меньше размера зерна, количество гидридных включений на одном кристаллите невелико. При концентрации водорода в

Рисунок 8 – Поверхность образцов с концентрацией водорода 0,002 мас.% (а), 0,028 мас.% (б), 0,039 мас.% (в), 0,207 мас.% (г), увеличение x160

Рисунок 9 – Поверхность образцов с концентрацией водорода 0,002 мас.% (а), 0,028 мас.% (б), 0,039 мас.% (в), 0,207 мас.% (г), увеличение х400

образце 0,039 мас. % количество гидридных включений увеличивается, длина гидридных включений ограничивается размером зерна. Для концентрации водорода 0,207 мас.% значительная часть гидридных пластин уже является массивными, фактически наблюдается дробление зерен на субзерна, которые связаны между собой гидридной прослойкой. Местами локализации гидридов на микроструктурном уровне служат дефекты структуры зерна – дислокации, границы зерен, являющиеся коллекторами растворенного в титане водорода.

Для подтверждения и дополнения результатов микроскопического анализа было проведено рентгеноструктурное исследование влияния наводороживания на параметры кристаллической решетки и фазовый состав сплава BT 1-0. Рентгено-структурный анализ проводился путем анализа дифрактограмм исследуемых образцов, полученных на дифрактометре Shimadzu XRD-7000. Дифракционные картины регистрировались с использованием Си Ка₁/а₂ излучения. Анализ фазового состава проводился с использованием базы данных PDF-4++, а также программы полнопрофильного анализа POWDER CELL 2.4. Результаты анализа рентгенограмм представлены в таблице 1. По результатам в исходном состоянии при комнатной рентгеноструктурного анализа, температуре кристаллическая решетка исследуемых образцов из сплава ВТ 1-0 соответствует а фазе титана и имеет гексагональную плотноупакованную (ГПУ) решетку. При содержании в образцах водорода до концентраций в 0,039 массовых % не наблюдается изменения фазового состава по сравнению с исходным образцом.

Воздействие внедренного водорода, начиная с концентрации 0,039 массовых %, приводит к появлению фазы гидрида титана, которая определяется по рентгенограмме со стехиометрическим составом TiH_{1,5}, имеет гранецентрированную кубическую (ГЦК) решетку. Результаты анализа

образцов полученные методом рентгеноструктурного анализа подтверждают выводы, сделанные по результатам микроскопического исследования, и хорошо согласуются с литературными данными, по количественному и качественному фазовому составу образцов, содержащих водород.

Содержание	Содержание	Содержание фазы ТіН _{1,5} ГЦК, мас.%	Решетка ГПУ		Решетка
водорода С _н , мас.%	фазы 111119, мас.%		a, Å	c, Å	а, Å
0	100	-	2,9446	4,6701	-
0,005	100	-	2,9460	4,6772	-
0,010	100	-	2,9406	4,6619	-
0,028	100	-	2,9444	4,6773	-
0,039	99,63	0,37	2,9274	4,6374	4,4824
0,062	98,96	1,04	2,9448	4,6704	4,4062
0,121	99,34	0,66	2,9380	4,6581	4,4005
0,207	91,92	8,08	2,9415	4,6705	4,4234
0,273	82,12	17,88	2,9370	4,6635	4,4099
0,500	77,15	22,85	2,9426	4,6725	4,4058

Таблица 1. Результаты рентгеноструктурного исследования образцов

Таким образом, для исследуемых образцов была проведена идентификация их структурно-фазового состояния, позволяющая в дальнейшем связать это состояние с акустическими характеристиками образцов.

Для определения зависимости относительного изменения скорости рэлеевской волны от содержания водорода в сплаве ВТ1-0 было измерено абсолютное значение скорости волны Рэлея разностным методом, были использованы датчики с резонансной частотой 5 МГц, начальное расстояние между датчиками – базовое расстояние $l_{д1}$ – составляло 17 мм, количество точек измерения – 11, шаг изменения расстояния между датчиками – 1 мм. Скорость рэлеевской волны и ошибка её измерения определялись по результатам трехкратных измерений для каждого образца.

На рисунке 10 представлен график зависимости относительного изменения скорости рэлеевской волны после наводороживания от концентрации водорода в образце. Изменение скорости рассчитывалось по формуле:

$$\Delta V_{R} = \frac{V_{R}(H_{2}) - V_{R}}{V_{R_{-}CP}} \cdot 100\%, \qquad (7)$$

где V_R – скорость рэлеевской волны в исходном образце; $V_R(H_2)$ – скорость рэлеевской волны в наводороженном образце; V_{R_CP} – среднее значение скорости рэлеевской волны по исходным образцам.

Как видно из графика, с увеличением концентрации водорода в образцах в диапазоне концентраций от 0 до 0,03 мас.% скорость рэлеевской волны уменьшается. Это можно объяснить тем, что при таком незначительном содержании водорода в образцах титана ВТ1-0 водород аккумулирует на дефектах, взаимодействуя с вакансиями и дислокациями и заполняя пустоты кристаллической решетки. При этом плотность титана незначительно

увеличивается, а его упругие свойства ухудшаются. С ростом концентрации водорода в образцах из титана ВТ1-0 в диапазоне концентраций от 0,03 до 0,28

Рисунок 10 – Зависимость относительного изменения скорости рэлеевской волны после наводороживания от концентрации водорода

мас.% скорость рэлеевской волны монотонно возрастает. При увеличении содержании водорода в исследуемых образцах происходит рост внутренних напряжений, рост модуля упругости и уменьшение пластичности, что является следствием увеличения содержания гидрида в материале образцов. По литературным данным процесс образования гидридной фазы начинается сразу при превышении предела растворимости водорода в металле. Таким образом, можно утверждать, что начало увеличения скорости рэлеевской волны соответствует началу интенсивного роста гидридной фазы в образцах.

Для определения зависимости коэффициента затухания от содержания водорода в титановом сплаве ВТ1-0 были проведены измерения с использованием датчиков с резонансной частотой 5 МГц, начальное расстояние между датчиками составляло 17 мм, число точек измерения – 21, шаг изменения расстояния между датчиками – 0,5 мм.

Среднее значение коэффициента затухания определенное по результатам измерений исходных образцов, составило $0,0104\pm0,0020$ Нп/мм для доверительной вероятности $\alpha = 0.95$.

На рисунке 11 представлена зависимость коэффициента затухания рэлеевской волны от содержания водорода в образцах из титана ВТ1-0. Среднее значение коэффициента затухания и погрешность его определения рассчитывались по результатам пяти измерений, проведенным для каждого наводороженного образца.

На графике наблюдается две области, в диапазоне концентраций водорода от 0 до ~ 0,030 мас.% значения коэффициента затухания для наводороженных образцов ниже чем у исходных образцов, в диапазоне концентраций водорода от ~ 0,030 мас.% и выше значения коэффициента затухания значительно выше чем у исходных образцов. Из данного графика, видно, что в диапазоне концентраций водорода от 0 до 0,005 мас.% коэффициент затухания рэлеевской волны уменьшается. Что можно объяснить закреплением дислокаций атомами водорода, и уменьшением дислокационного затухания. Дальнейшее увеличение содержания водорода до 0,02 мас.% не оказывает влияния на значение коэффициента затухания рэлеевской волны. Как было показано ранее, при концентрации водорода выше 0,03 мас.% происходит интенсивное образование гидридной фазы, о чем свидетельствует резкое увеличение коэффициента затухания рэлеевской волны. При этом определяющий вклад в коэффициент затухания начинает вносить рассеяние ультразвуковой волны на неоднородностях структуры – гидридах в виде пластинчатых и игольчатых включений в теле и на границах зерна.

В диапазоне концентраций от 0,032 до 0,130 мас.% после скачкообразного увеличения коэффициента затухания более чем в 2,5 раза до 0,026 Нп/мм, наблюдается уменьшение коэффициента затухания до величины 0,017 Нп/мм. Это обусловлено увеличением содержания гидридной фазы, вследствие чего гидридные выделения объединяются в более крупные образования, наступает стадия выраженного водородного охрупчивания. При содержания водорода в образцах 0,130 мас.% и более значение коэффициента затухания рэлеевской волны не меняется. В этом диапазоне концентраций водорода можно выделить два механизма: дальнейшее увеличение содержания гидридной фазы, что ведет к уменьшению коэффициента затухания, и вызванный ростом гидридов процесс образования макродефектов, повышающий коэффициент затухания.

В заключении сформулированы основные выводы по диссертационной работе.

ЗАКЛЮЧЕНИЕ

1. На основе современной приборной базы разработан и реализован ультразвуковой стенд контроля, предназначенный для измерения параметров распространения рэлеевской волны в металлах и сплавах. Стенд состоит из приборной части, реализующей акустический тракт стенда, и системы позиционирования, обеспечивающей высокоточное определение расстояния между излучательным и приемным пьезопреобразователями.

Технические характеристики ультразвукового стенда:

расстояние между излучателем и приемником – от 15 до 115 мм;

длина сканирования образца – до 100 мм;

толщина контролируемого образца – от 1 до 10 мм;

точность позиционирования датчиков – 0,0025 мм; точность позиционирования датчиков относительно образца – 0,0025 мм; скорость перемещения образца, датчика – 0,125; 0,25; 0,5; 1,0 и 2,5 мм/с; количество точек измерения – до 100;

приборная погрешность измерения скорости рэлеевской волны – до 0,2 м/с.

2. Использование разработанного ультразвукового стенда контроля для измерения скорости и коэффициента затухания рэлеевской волны в образцах из титанового сплава BT1-0 с разным содержанием водорода, позволило показать, что достигнутые характеристики ультразвукового стенда соответствуют решаемым задачам, и требованиям, предъявляемым к экспериментальным установкам для исследования влияния водорода на физико-механические свойства металлов и сплавов, и подтвердить закономерности взаимодействия водорода и титанового сплава BT1-0.

3. Определены зависимости скорости распространения и коэффициента затухания рэлеевской волны от содержания водорода в титановом сплаве ВТ1-0 в диапазоне концентраций от 0 (состояние поставки) до 0,3 массовых процентов.

Впервые установлено, что в диапазоне концентраций водорода в титановом сплаве ВТ1-0 от 0 до 0,03 мас.% наблюдается уменьшение значения скорости рэлеевской волны в среднем на 0,15% относительно значения для исходных образцов. При увеличении содержания водорода в титановом сплаве ВТ1-0 до 0,28 мас. % происходит практически линейное увеличение скорости рэлеевской волны на 1,0%. Точка начала увеличения скорости рэлеевской волны соответствует началу образования гидридной фазы в образцах.

В диапазоне концентраций водорода от 0 до 0,005 мас.% коэффициент затухания рэлеевской волны уменьшается от значения 0,0111 Нп/мм до значения 0,0065 Нп/мм, что объясняется взаимодействием растворенного в металле водорода с дефектной структурой материала. Дальнейшее увеличение содержания водорода до 0,02 мас.% не оказывает влияния на значение коэффициента затухания рэлеевской волны. При увеличении концентрации водорода выше 0,03 мас.% происходит интенсивное образование гидридной фазы, о чем свидетельствует резкое увеличение коэффициента затухания рэлеевской волны. В диапазоне концентраций от 0,032 до 0,130 мас.% после скачкообразного увеличения коэффициента затухания до 0,026 Нп/мм, наблюдается уменьшение коэффициента затухания до величины 0,017 Нп/мм. При содержания водорода в образцах 0,130 мас.% и более значение коэффициента затухания рэлеевской волны не меняется.

Выводы о влиянии водорода на изменение структурно-фазового состояния, акустические и физико-механические свойства титанового сплава ВТ1-0 подтверждены результатами микроскопического, рентгеноструктурного исследований, а также механическими испытаниями исследованных образцов.

Комплексное применение полученных зависимостей параметров распространения поверхностной волны позволяет оценить содержание водорода в титановом сплаве ВТ1-0 и определить момент начала процесса водородного охрупчивания.

Список публикаций по теме диссертации

Публикации в изданиях. Рекомендованных ВАК РФ

1. Гаранин, Г.В. Исследование динамики образования трещин в нержавеющей стали и титане при насыщении водородом / И.П. Чернов, Ю.П. Черданцев, А.М. Лидер, Н.Н. Никитенков, Г.В. Гаранин, М.Х. Кренинг, Х. Баумбах // Физика и химия обработки материалов. – 2001. – № 2. – С. 18-25.

2. Гаранин, Г.В. Дефекты в титане, инициированные водородом / И.П. Чернов, Ю.П. Черданцев, А.М. Лидер, Н.Н. Никитенков, Г.В. Гаранин, М. Кренинг, А.С. Сурков // Физическая мезомеханика. – 2001. – Т. 3, № 6. С. 97–103.

3. Гаранин, Г.В. Установка для определения содержания водорода в металлах ультразвуковым методом / Г.В. Гаранин, В.В. Ларионов, А.М. Лидер // Приборы и техника экспериментов. – 2013. – №1. – С.144–145.

4. Гаранин, Г.В. Метод ультразвукового определения водорода в материалах и изделиях на основе титана / А.М. Лидер, В.В. Ларионов, Г.В. Гаранин, М.Х. Кренинг // Журнал технической физики. – 2013 – Т. 83. – Вып. 9. – С. 157 – 158.

$Патенты P \Phi$

1. Патент РФ № 2501006 С1, МПК G01N 11/02 / Способ идентификации водородного охрупчивания легких сплавов на основе титана Гаранин Г.В., Лидер А.М., Ларионов В.В; заявитель и патентообладатель Томский политехнический университет.

Публикации в других изданиях

1. Гаранин, Г.В. Накопление дефектов в титане при электролитическом насыщении водородом / И.П. Чернов, Ю.П. Черданцев, А.М. Лидер, Г.В. Гаранин, М. Кренинг, Х. Баумбах // Водородная обработка материалов: труды 3 Международной конференции "ВОМ-2001", Донецк - Мариуполь, 14-18 мая 2001 г.. — Донецк: Типография "Норд Компьютер", 2001. — С. 357-358.

2. Garanin, G.V. Dynamics of Defects Accumulation During Hydrogen Charge of Titanium and Stainless steel / I.P. Chernov, Y. P. Cherdantzev, A.M. Leader, N.N. Nikitenkov, G.V. Garanin // The 5 Korea-Russia Int. Symposiumon Sci. And Technology. Proceedings KORUS-2001. – Tomsk, 2001. – P. 241–244.

3. Гаранин, Г.В. Воздействие электронов на титан, насыщенный водородом / И.П. Чернов, Ю.П. Черданцев, А.М. Лидер, Г.В. Гаранин, А.С. Сурков, К. Добман // Proceedings of 12th International Conference on Radiation Physics and Chemistry of Inorganic Materials. - Tomsk: TPU, 2003. – P. 527–531.

4. Гаранин, Г.В. Исследование корреляции между скоростью звука и временем жизни позитронов в титане в зависимости от содержания водорода и величины пластической деформации / И.П. Чернов, Ю.П. Черданцев, А.М. Лидер, Г.В. Гаранин, А.С. Сурков, К. Добман // Тезисы докладов XXXIII Международной конференции по физике взаимодействия заряженный частиц с кристаллами. – Москва: УНЦДО, 2003. – С. 119.

5. Гаранин, Г.В. Влияние водорода и механических напряжений на скорость звука в титане и нержавеющей стали / И.П. Чернов, Ю.П. Черданцев, Г.В.

Гаранин, А.М. Лидер, А.С. Сурков // Альтернативная энергетика и экология. – 2005. – вып. 5. – С. 45–49.

6. Гаранин, Г.В. Влияние водорода, термического отжига и радиационного воздействия на текстуру металлов / И.П. Чернов, Ю.П. Черданцев, А.М. Лидер, Г.В. Гаранин, А.К. Ган, Н.С. Томина // Тезисы докладов XXXVIII международной конференции по физике взаимодействия заряженных частиц с кристаллами. – М.: Университетская книга, 2008. – С. 108.

7. Гаранин, Г.В. Неразрушающие методы контроля водородного охрупчивания конструкционных материалов / Чернов И.П., Черданцев Ю.П., Мамонтов А.П., Панин А.В., Никитенков Н.Н., Лидер А.М., Гаранин Г.В. и др. // Альтернативная энергетика и экология. – 2009. – № 2. – С. 15–22.

8. Гаранин, Г.В. Применение акустических методов для изучения релаксационных явлений в титане при рентгеновском облучении в процессе пластической деформации / Г. В. Гаранин [и др.] // Тезисы докладов 39 Международной конференции по физике взаимодействия заряженных частиц с кристаллами (Москва 26 мая - 28 мая 2009 г.) / Московский государственный университет им. М. В. Ломоносова (МГУ), Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына (НИИЯФ); под ред. проф. А. Ф. Тулинова. — М.: Университетская книга, 2009. — С. 145.

9. Гаранин, Г.В. Физические свойства насыщенных водородом металлов и сплавов: специализированный физический практикум [Электронный ресурс]: практикум / И. П. Чернов, Ю.П. Черданцев, А.М. Лидер, Г.В. Гаранин; Национальный исследовательский Томский политехнический университет (ТПУ). — 1 компьютерный файл (pdf; 5.65 MB). — Томск: Изд-во ТПУ, 2009. — С. 235. Заглавие с титульного экрана. — Доступ из корпоративной сети ТПУ. Режим доступа: <u>http://www.lib.tpu.ru/fulltext2/m/2012/m155.pdf</u>

10. Гаранин. Г.В. Лабораторная установка для измерения скорости распространения ультразвуковых волн В наводороженных металлах [Электронный ресурс] / Г.В. Гаранин, В.В. Ларионов, А.М. Лидер // Вестник науки Сибири: электронный научный журнал / Томский политехнический университет (ТПУ). — 2012. — № 3 (4). — [С. 55-60]. — Заглавие с титульного листа. — Свободный доступ из сети Интернет. — ISSN 2226-0064 Режим доступа: http://sjs.tpu.ru/journal/article/viewPDFInterstitial/353/315

11. Garanin, G.V. The laboratory device for measuring the propagation velocity of ultrasonic waves in hydrogenated metals. / Lider A.M., Larionov V.V., Garanin G.V. // International Congress on Energie Fluxes and Radiation Effects: Abstracts. – Tomsk: Publishing House of IAO SB RAS, 2014. – p.528.