СПИСОК ЛИТЕРАТУРЫ

- Бурлаков Э.В., Алатов Д.В., Попков Д.А., Шутов Р.Б. К расчету основных параметров спицы при интрамедуллярном армировании трубчатых костей // Медицинская техника. – 2008. – № 3. – С. 26–28.
- Шутов Р.Б. Оперативное удлинение врожденно укороченной голени автоматическим дистрактором с применением интрамедуллярного армирования спицами с гидроксиапатитным покрытием: дис. ... канд. мед. наук. – Курган, 2009. – 226 с.
- Карлов А.В., Шахов В.П. Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики. – Томск: STT, 2001. – 477 с.
- Шаркеев Ю.П., Колобов А.В., Хлусов И.А., Карлов А.В., Легостаева Е.В., Шашкина Г.А. Биокерамические покрытия с высоким содержанием кальция для медицины // Физическая мезомеханика. – 2004. – Т. 8. Спец. выпуск. – Ч. 2. – С. 83–86.
- Гузеев Вит.В, Верешагин В.И., Гузеев Вас.В. Покрытия на основе фосфатных связующих // Стекло и керамика. 2000. № 6. С. 58–59.

- Аронов А.М., Пичугин В.Ф., Ешенко Е.В., Рябцева М.А., Сурменев Р.А., Твердохлебов С.И., Шестериков Е.В. Тонкие кальций-фосфатные покрытия, полученные методом высокочастотного магнетронного распыления, и перспективы их применения в медицинской технике // Медицинская техника. 2008. № 3. С. 18–22.
- Хенч Л., Джонс Д. Биоматериалы, искусственные органы и инжиниринг тканей. – М.: Техносфера, 2007. – 303 с.
- Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. – М.: Наука, 2005. – 203 с.
- 9. Катаева В.М., Попова В.А., Сажина Б.И. Справочник по пластическим массам. – Т. 1. – М.: Химия, 1975. – 498 с.
- Графская Н.Д. Сравнительная оценка сетчатых полимерных материалов как алопротезов брюшной сетки при грыжах: дис. ... канд. мед. наук. – М., 1967. – 212 с.
- Федотов А.Ю., Смирнов В.В., Фомин А.С., Фадеева И.В., Баринов С.М. Пористые хитозановые матриксы, армированные биоактивными соединениями кальция // Доклады РАН. – 2008. – Т. 243. – № 6. – С. 771–773.

Поступила 05.02.2010 г.

УДК 539.216.2, 621.666.762

УВЕЛИЧЕНИЕ ТЕРМОЦИКЛИЧЕСКОЙ СТОЙКОСТИ ПОКРЫТИЙ НА ОСНОВЕ Zr-Y-O, ПОЛУЧЕННЫХ МЕТОДОМ МАГНЕТРОННОГО ОСАЖДЕНИЯ

В.П. Сергеев*, В.В. Нейфельд, А.Р. Сунгатулин, О.В. Сергеев, М.В. Федорищева, А.Ю. Никалин

*Томский политехнический университет Институт физики прочности и материаловедения СО РАН, г. Томск E-mail: retc@ispms.tsc.ru

Методом магнетронного распыления в режиме постоянного тока и импульсном режиме получены покрытия на основе Zr–Y–O с различной концентрацией Y. Методами рентгеноструктурного анализа и масс-спектрометрии вторичных ионов исследован химический и фазовый состав покрытий. Выявлено влияние режимов осаждения покрытий на их термоциклическую стойкость.

Ключевые слова:

Ионная бомбардировка, покрытие, оксид, цирконий, термостойкость, фазовый состав.

Key words:

Ion bombardment, coating, oxide, zirconium, heat-resistance, phase composition.

Введение

Циркониевая керамика занимает ведущее место среди огнеупорных конструкционных материалов, поскольку сохраняет высокие механические свойства до температур, составляющих $0,8...0,9T_{nn}$, равной 3173 К [1]. В связи с этим понятен интерес к ее теплофизическим свойствам и, в первую очередь, к термостойкости. В современной технике используют частично стабилизированный диоксид циркония, содержащий в качестве стабилизатора оксид иттрия. В таком материале возможна реализация многофазной структуры, содержащей все три модификации диоксида циркония – кубическую, тетрагональную и моноклинную. Полиморфные превращения, происходящие при изменении температуры, можно использовать для повышения термостойкости керамики.

В настоящее время установлено, что высокий уровень механических свойств материалов на ос-

нове частично-стабилизированного диоксида циркония обусловлен механизмом трансформационного упрочнения, включающим в себя мартенситный переход метастабильной тетрагональной Т-фазы в стабильную моноклинную М-фазу под воздействием приложенных напряжений [2, 3]. Существенным недостатком трансформационноупрочненной керамики является снижение высоких прочностных свойств с повышением температуры и приближением ее к области стабильности тетрагональной модификации, где из-за отсутствия термодинамического стимула прекращается рост упрочнения за счет мартенситного тетрагональномоноклинного превращения [2].

Современные требования к эксплуатационным характеристикам жидкостных ракетных двигателей делают актуальной задачу нанесения покрытий с низкой теплопроводностью и высокой термоциклической стойкостью (ТЦС) на внутренние поверхности сопел, в частности, теплозащитных на основе оксидов циркония-иттрия Zr-Y-O [4]. Применяемые до настоящего времени технологии их получения (газоплазменные, электроннолучевые, детонационные, гальванические и др.) не позволяют получить покрытия с необходимой термоциклической стойкостью. В данной работе использовался метод нанесения теплозащитных покрытий на основе Zr-Y-O с помощью импульсного магнетронного распыления. Целью работы является изучение возможностей повышения термоциклической стойкости теплозащитных покрытий на основе Zr-Y-O с помощью импульсного магнетронного распыления. Целью работы является изучение возможностей повышения термоциклической стойкости теплозащитных покрытий на основе Zr-Y-O путем оптимизации режимов импульсного магнетронного распыления мозаичных цирконий-иттриевых мишеней.

2. Методика эксперимента

Образцы размером 30×20×2 мм изготавливались из листовой меди марки М1. Рабочую поверхность образцов шлифовали и полировали до величины шероховатости 0,08 мкм. Перед осаждением покрытия поверхностный слой подложки подвергали бомбардировке дуговым источником ионов циркония. Процесс осаждения покрытий и обработки подложки проводили с помощью вакуумной установки типа «Квант», оснащенной круговым планарным магнетроном мощностью 5 кВт с мозаичной циркониево-иттриевой мишенью диаметром 120 мм и вакуумно-дуговым источником ионов циркония с плотностью тока 1,4...2,6 мА/см².

Питание магнетрона осуществлялось либо от источника питания постоянного тока, либо от импульсного источника с частотой повторения импульсов тока до 50 кГц. Время напыления покрытий равно 2 ч. Толщина осаждаемых покрытий во всех исследуемых случаях была одинаковой ~3 мкм. Мозаичные мишени с различным содержанием иттрия изготавливались путем равномерного по поверхности высверливания лунок в основной матрице, состоящей из циркония, и заделывания в них цилиндрических штифтов из иттрия [5]. Исходя из литературных данных [2], указывающих, что оптимальная концентрация иттрия в цирконии должна составлять 2...8 ат. %, для получения наиболее стойкой к термоциклированию частично-стабилизированной оксидной керамики на основе циркония-иттрия, помимо мишени М1 из чистого Zr, были изготовлены две циркониевые мишени М2 и М3 с расчетом, что концентрации иттрия в покрытиях получить в пределах 2...3 и 6...8 ат. %, соответственно.

Образец помещался в камеру на вращающийся стол, с помощью которого можно перемещать его без развакуумирования камеры в положение напротив магнетрона или ионного источника. На предметный стол подавали потенциал смещения в интервале от -400 до -900 В при бомбардировке поверхностного слоя подложки и от 0 до -100 В при осаждении покрытия. Температура подложек при осаждении покрытия была 673 К. Управление структурно-фазовым состоянием покрытия осуществляли подбором комбинации режимов осаждения и ионной бомбардировки, концентрации легирующего элемента иттрия, общего давления рабочей газовой смеси и парциальных давлений аргона и кислорода. В табл. 1 приведены режимы напыления покрытий с помощью магнетрона постоянного тока (образцы 1–2), и при работе магнетрона в импульсном режиме (образцы 3–5).

Состав полученных покрытий и его изменение по толщине покрытия исследовались методом масс-спектрометрии вторичных ионов (МСВИ). Структурно-фазовое состояние покрытий анализировали с помощью рентгеновского дифрактометра ДРОН-7. Стойкость покрытий к растрескиванию и отслоению при смене температуры определяли по результатам термоциклирования образцов по следующему режиму: нагрев образца до 1000 °С в течении 1 мин., затем принудительное охлаждение в течении 1 мин. до температуры 20 °C, проведение фотосъёмки поверхности образца со стороны покрытия при помощи специальной фотокамеры Microscope DCM500 на оптическом микроскопе BMG-160, данные с которой передаются непосредственно в компьютер, далее снова нагрев. Общая длительность каждого цикла, включая все стадии процесса: нагрев-охлаждение-фотографирование, составляло 5 мин. Фотосъёмка покрытия проводилась также перед испытанием на термоциклическую стойкость. За критерий термостойкости покрытий выбраны количество циклов до отслоения 50 % площади покрытия от поверхности образца [4]. После этого испытания прекращались.

Таблица 1. Режимы осаждения покрытий на основе Zr−Y−O и термоциклическая стойкость покрытий (U_{смещ} – напряжение смещения на подложку, I_м – ток магнетрона, f – частота работы импульсного источника, P₀₂ – давление кислорода в камере, P_{общ} – общее давление газов в камере)

№ партии	Тип ми-	11 р	<i>I</i> _м , A	f, кГц	Давление газов, Па	
образцов	шени	<i>U</i> _{смещ} , D			Робщ	P _{O2}
1	M1	0	4	-	0,3	0,06
2	M1	100	3	-	0,3	0,06
3	M2	0	4,6	40	0,3	0,06
4	M2	100	3,5	40	0,15	0,12
5	M3	100	3,5	40	0,15	0,12

3. Результаты эксперимента и обсуждение

При определении методом МСВИ химического состава покрытия – 1, напыленного с помощью магнетрона постоянного тока с использованием мишени из чистого циркония М1 при соотношении парциальных давлений кислорода к аргону 1 : 4 установлено, что состав покрытия отвечает формуле $Zr_{0,40}O_{0,60}$ (рис. 1, *a*). При исследовании фазового состава методом РСА показано, что покрытие состоит полностью из М-фазы ZrO_2 (рис. 2, *a*). Испытание покрытий на термоциклическую стойкость показало, что средняя величина ТЦС равна 1,2 цикла (табл. 2). Процесс разрушения покрытия начинается

уже в ходе первого цикла нагрева-охлаждения путем отслаивания или отщелкивания от подложки отдельных участков площадью 0,01...0,1 мм² (рис. 3). Это происходит из-за значительного различия значений термического коэффициента термического расширения оксида циркония и меди, равных при температуре ~1273 К, соответственно, (7,2...11,0)·10⁻⁶ К⁻¹ [1] и 22,3.10-6 К-1 [6]. При нагреве медная подложка расширяется стремительнее, и керамическое покрытие, сдерживая ее расширение, подвергается действию значительных напряжений растяжения, которые при превышении предела прочности покрытия ZrO₂ разрушают его в областях концентраторов напряжений, которыми являются поры, стыки границ зерен, инородные включения. В ходе второго цикла происходит отслаивание покрытия этого типа с ~40...50 % площади подложки (рис. 3).

Рис. 1. Концентрационные профили элементов, составляющих покрытия: а) 1; б) 4 и в) 5. h – глубина травления пучком ионов аргона поверхностного слоя покрытия при анализе элементного состава методом МСВИ

Рис. 2. Дифрактограммы покрытий – 1 (а), – 4 (б) и – 5 (в)

Если выполнить осаждение покрытия в условиях бомбардировки ионами аргона, прикладывая потенциал смещения к медной подложке –100 В, то концентрация кислорода в покрытии увеличивается до 62 ат. %, по-видимому, по механизму имплантации атомов отдачи [7]. В фазовом составе покрытия происходят изменения. Появляется Т-фаза в количестве 12 об. % (табл. 2). Это приводит к увеличению примерно вдвое среднего значения ТЦС покрытия 2. Повышение ТЦС в этом случае обусловлено механизмом трансформационного упрочнения [8] керамического покрытия в результате перехода Т-фазы в М-фазу в области некоторой части концентраторов напряжений.

При зарождении трещины в этих локальных объемах под действием упругих напряжений растяжения, имеющих максимальное значение в области ее вершины, осуществляется мартенситное превращение оксида циркония путем сдвига атомов на расстояния меньшие, чем параметр решетки, и сжатия исходной структуры, что сопровожда-

Рис. 3. Изображение поверхности покрытия образца из партии № 3 после очередных циклов испытаний на термоциклическую стойкость (покрытие – темного цвета, подложка – светлого цвета, цифрами обозначен номер цикла, в ходе которого выполнено фото покрытия, размеры сфотографированного участка покрытия 2,09×1,56 мм)

ется значительным уменьшением потенциальной энергии упругой деформации системы. В результате происходит релаксация напряжений в этих областях, рост трещины прекращается, и покрытие в этой области сохраняется. Однако поскольку Т-фаза содержится в покрытии — 2 в небольшом количестве, то она подавляет действие только небольшого количества концентраторов напряжений. Поэтому результат повышения ТЦС оказывается не достаточно высоким.

Таблица 2. Среднее значение термоциклической стойкости (ТЦС) покрытий на основе оксида циркония в зависимости от их химического и фазового состава

№ партии образцов	Химический состав, ат. %			Фазовый состав, об. %			ТЦС, среднее
	Zr	Y	0	ZrO _{2-m}	ZrO _{2-t}	Y_2O_3	число циклов
1	40	-	60	100	-	-	1,2
2	38	-	62	88	12	-	2,3
3	40	-	60	94	6	-	1,4
4	31	2	67	60	40	-	3,8
5	27	6	67	55	40	5	6,5

Осаждение покрытия – 3, выполненное в режиме импульсного магнетронного распыления мишени M2 с небольшой добавкой иттрия, дает тот же химический состав в пределах погрешностей измерения, что был получен для покрытий типа – 1, но при малом отличии фазового состава. В этом случае образуется небольшое количество Т-фазы ~6 об. %. Соответственно, среднее значение ТЦС незначительно увеличивается в сравнении с покрытиями – 1, содержащими только М-фазу.

Существенно более высокое увеличение ТЦС в ~3 раза получается при осаждении покрытий – 4 (табл. 2) с использованием той же мишени M2, но в условиях ионной бомбардировки и понижении тока разряда магнетрона от 4,6 до 3,5 А. В этих условиях напыления в покрытии возрастает концентрация кислорода до стехиометрического значения ZrO_2 , а также появляется иттрий в небольшом количестве 2 ат. % (табл. 2). Наблюдается резкое увеличение объемной доли Т-фазы до 40 об. % (рис. 2, δ). В результате значительного роста соотношения между тетрагональной и моноклинной

фазами до 0,67, механизм трансформационного упрочнения циркониевой керамики при термоциклировании системы подложка-покрытие проявляется в полной мере и приводит к значительному возрастанию ТЦС.

Если сменить в магнетроне мишень M2 на M3 с более высоким содержанием иттрия и напылять покрытия при том же режиме, который использовался при осаждении предыдущего покрытия – 4, то получим для этого типа покрытий – 5 еще более значительное повышение ТЦС в 5,4 раза (рис. 4), превышающее ее среднее значение в покрытиях – 1, состоящих только из М-фазы.

В отличие от химического состава покрытия -4, в покрытиях - 5 наблюдается увеличение относительной концентрации иттрия до 6 ат. % за счет соответствующего уменьшения содержания циркония при неизменной концентрации кислорода (рис. 1, в). Проведение рентгеноструктурного анализа покрытий – 5 (рис. 2, в) показывает небольшое увеличение относительной доли Т-фазы в сравнении с моноклинной до 0,73 и появление кубической фазы Ia3 оксида иттрия Y₂O₃ в количестве ~ 5 об. % (табл. 2). По-видимому, эти факторы являются ответственными за повышение ТЦС. Однако только их действием столь значительное возрастание ТЦС трудно объяснить. Безусловно, они могут вносить определенный вклад в величину обнаруженного эффекта. Тем не менее, более значимым механизмом повышения ТЦС в покрытиях – 5, по нашему мнению, может быть обусловленный ионной бомбардировкой переход в легированном иттрием оксиде циркония тетрагональной фазы из одной модификации Т, в другую T_{et} с большей степенью тетрагональности c/a=1,035. Известно [3], что эта модификация тетрагональной фазы обладает более высокой способностью к трансформационному упрочнению.

Выводы

 Установлено, что покрытия ZrO₂ на медных подложках, напыленные с помощью магнетрона постоянного тока с мишенью из чистого циркония, полностью состоят из М-фазы и обладают наименьшей термоциклической стойкостью.

Рис. 4. Изображение поверхности покрытия образца из партии № 5 после очередных циклов испытаний на термоциклическую стойкость (масштаб тот же, что и на рис. 3)

- В стабилизированных иттрием до 6 ат. % покрытиях Zr_{1-x}Y_xO₂ ионная бомбардировка повышает степень тетрагональности Т-фазы, что увеличивает термоциклическую стойкость покрытий.
- 3. Оптимальным режимом осаждения покрытий, повышающим их термоциклическую стойкость

СПИСОК ЛИТЕРАТУРЫ

- 1. Физико-химические свойства окислов. Справочник / под ред. Г.В. Самсонова. – М.: Металлургия, 1978. – 472 с.
- Nettleship L., Stevens R. Tetragonal zirconia polycrystal (TZP) a review // Int. J. High Technology Ceramics. – 1987. – № 3. – P. 1–32.
- Акимов Г.Я., Маринин Г.А., Каменева В.Ю. Эволюция фазового состава и физико-механических свойств керамики ZrO₂ + 4mol%Y₂O₃ // Физика твердого тела. – 2004. – Т. 46. – № 2. – С. 250–253.
- Панин В.Е., Сергеев В.П., Ризаханов Р.Н., Сергеев О.В., Панин С.В., Бармин А.А., Голиков А.Н., Почивалов Ю.И., Полянский М.Н. Наноструктурирование покрытий – новый путь создания специальных материалов для улучшения характери-

в 5,4 раза, является импульсное магнетронное распыление мозаичной цирконий-иттриевой мишени и одновременная ионная бомбардировка покрытия в процессе осаждения.

Работа выполнена при поддержке Президиума РАН, проект № 12.2, и Российского фонда фундаментальных исследований, гранты № 08-08-13679офи_ц и № 09-01-12026офи_м.

стик изделий космической техники // Деформация и разрушение материалов и наноматериалов: Сб. статей по матер. II Междунар. конф. – М.: Наука и технология, 2007. – С. 357–359.

- Гува А.Я. Краткий теплофизический справочник. Новосибирск: Сибвузиздат, 2002. – 300 с.
- Комаров Ф.Ф. Ионная имплантация в металлы. М.: Металлургия, 1990. – 216 с.
- Акимов Г.Я., Тимченко В.М. Влияние скорости деформирования и предварительного нагружения на трещиностойкость керамики на основе ZrO₂ // Проблемы прочности. – 2002. – № 5. – С. 123–129.

Поступила 16.03.2010 г.