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Abstract The given paper presents the calculation method of liquid flow 
and radiation heating in thermal entry length. For the solution of a problem 
with nonlinear boundary conditions the method of linear function is used 
[2] which allows to putting boundary conditions in a linear form. 

1 Problem statement 
Inside the thin-walled channel (fig.1) liquid fluid is moved and heated axially owing to out-
er high-temperature gas filling. The heat transfer on the outer surface keeps in both with the 
Stefan-Boltzmann’s law. In the tube entry velocity traverse is parabolic, and the liquid tem-
perature is constant and equal to 0� . Assume the viscosity factor is dependent on tempera-
ture and all other physical properties are permanent. It is reasonable that density is constant, 
weakly dependent on temperature for most of liquid fluids excluding from consideration 
influence of natural convection. The friction heat and axial heat transfer are neglected.  

 
Fig.1. The physical model and coordinate system for thermal entry length. 

Within specified conditions the heat transfer process is described by energy equation 
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equation of through flow 
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is temperature of heating medium, and 0T is tempera-

ture of inlet flow. 
The boundary conditions for the energy equation (1) reduce to inlet temperature 

0� �� with 0x � and 0r � , (4)

to symmetry condition on pipe axis 

0,
r

��
�

�
with    0x � and   0r � (5)

and to the law of radiant heating on surface 
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To linearize the boundary conditions (6) we introduce nonlinear integral transformation 
[2]  
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The transformation (7) linearizing the boundary condition (6) 
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reduces the energy equation (1) to form: 
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In this connection the symmetry condition (5) isn’t changed
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Z
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 with 0x �  and 0r � , 

and the transformed inlet temperature may be written as 
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Z arth arctg Z� �� � �  with 0x �  and 0 0r r� � . 

As is shown in [2-3] with not-too-large amounts of temperature gradients / Z�� �  the 
nonlinear complex (9) in the energy equation (8) may be neglected. 

With further analysis we distinguish two zones in thermal entry length: thermal bounda-
ry layer with thickness �  and liquid flow core, where temperature is constant and equal to 
inlet heated length temperature. It is considered that the amount �  is substantially smaller 
than the pipe radius 0r . The last condition means that the considered problem is con-
strained by a set of small calculated lengths.

The using nondimensional variables
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and averaging right-hand sides of energy and motion equations relatively on thermal 
boundary layer thickness and pipe radius (like in [1]), we shall obtain 
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, and ( )A X  is defined in [1]. 

The solution of (10) and (12) must satisfy the boundary conditions 
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The integral transformed by means of the system (10) – (15) was outlined in the paper 
[1] and in general terms is expressed by dependence 
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Inserting then Z Sk t� �  in relation (7) we define the target relative temperature � . 
The expression for nondimensional temperature on the wall surface we can obtain from 

(16), assuming 0Y �
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The most simple dependencies for temperature profile are obtained in the problems 
when liquid viscosity is constant. With const� �  the boundary layer thickness is defined 
from comparatively simple equation [17] 
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2 Results
The fig. (2) shows temperature profiles in thermal entry length which were obtained for that 
conditions. The calculations are made on the basis of (18), (16) and (7). The inlet tempera-
ture 0�  is assumed equal to 0.5. Nondimensional boundary layer thickness k  is chosen 

within ranges 0.10 and 0.20. The calculated lengths / 2 0x Pe r� : 0.41∙10-4; 3.2∙10-4 match 
the chosen values of k.

                                          
40.2; / 2 3.2 100k x Pe r
�
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40.1; / 2 0.4 100k x Pe r
�
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Fig. 2. Temperature profiles in thermal entry length, 1–4: 1.0; 1.5; 2.0; 2.5Sk � . 

Here it may be noted that in conditions of constant viscosity the velocity profile is para-
bolic and it is possible to use exact solution of energy equation without averaging its right-
hand side. 
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