УДК 661.689:661.686

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ СУБЛИМАЦИОНОЙ ОЧИСТКИ ГЕКСАФТОРОСИЛИКАТА АММОНИЯ ОТ ПРИМЕСЕЙ

В.А. Борисов, А.Н. Дьяченко, А.С. Кантаев

Томский политехнический университет E-mail: kantaev@phtd.tpu.ru

Исследовано взаимодействие В₂О₃ и NH₄HF₂. Продукты реакции идентифицированы методами ИК-спектроскопии и рентгенофазового анализа. С помощью кинетического эксперимента определены энергии активации сублимации NH₄BF₄ и (NH₄)₂SiF₀. Установлена невозможность их разделения методом сублимации. Проведен элементный анализ продуктов десублимации. Экспериментальным путем определена оптимальная температура десублимации (NH₄)₂SiF₀ для очистки его от примесей.

Ключевые слова:

Сублимация, десублимация, гексафторосиликат аммония, бор. *Кеу words:*

Sublimation, desublimation, hexafluorosilicic ammonium, borum.

Развитие современных технологий требует новых материалов с заданными свойствами, для производства которых требуются особо чистые вещества. Для производства «солнечного кремния» карботермическим способом требуется диоксид кремния с содержанием примесей менее 0,001 мас. %. В России и ряде других стран имеются месторождения кварца и кварцевых песков высокой чистоты с содержанием примесей, включая и трудно удаляемые бор и фосфор, 0,0001 мас. %. Рациональнее использовать сырье более низкого качества, предварительно очищая его от примесей.

Фтораммонийным способом можно получить диоксид кремния, с содержанием примесей менее 0,01 %. Более чистый диоксид кремния мешает получить примесь бора, которая сложно удаляется при сублимационной очистке $(NH_4)_2SiF_6$.

В настоящее время существуют работы посвященные исследованию сублимации и десублимации гексафторосиликата аммония (ГФСА), но все работы проводились на лабораторных установках и в лабораторных условиях. Также мало работ посвященных десублимации ГФСА при повышенных температурах. Получение данных о сублимации и десублимации ГФСА на полупромышленных установках представляют интерес не только в плане получения научных данных, а также нахождения приблизительных технологических параметров для промышленных установок.

Известно [1, 2], что при ведении процесса сублимации ГФСА при температуре выше 300 °С, и десублимировании его при температуре 20 °С получался продукт содержащий смесь $(NH_4)_2SiF_6$ и NH_4SiF_5 , последний обладает чувствительностью к атмосферной воде, образуя при этом оксофторосиликаты сложного переменного состава $(NH_4)_{1+y}SiO_xF_{5-2x+y}$ и $(NH_4)_{2-y}SiO_xF_{6-2x-y}$. При их растворении образуется гель состава $SiO_2 \cdot nH_2O$, который в свою очередь затрудняет процесс фильтрования при его дальнейшем осаждении аммиачной водой. Десублимация при температурах 70...80 °С, получаемый десублимат представляет собой ГФСА стехиометрического состава. Он хорошо растворим в воде, что не затруднит процесс фильтрования. Исследования, посвящённые очистке гексафторосиликата аммония от бора в доступной литературе отсутствуют. В этой связи целью работы являлось определение оптимальных технологических параметров получения особо чистого ГФСА.

Для достижения поставленной цели необходимо было решить ряд задач:

- исследование взаимодействия борного ангидрида B₂O₃ с NH₄HF₂;
- исследование методом термогравиметрии продуктов взаимодействия B₂O₃ с NH₄HF₂;
- определение температурного режима десублимации ГФСА, при растворении которого образуется легкофильтруемый раствор;
- определение технологических параметров сублимационной очистки ГФСА.

Взаимодействие B₂O₃ с NH₄HF₂ исследовали методами термогравиметрического анализа (TГА) и дифференциальной сканирующей калориметрии (ДСК) [3] (рис. 1) с использованием совмещенного ТГА/ДТА/ДСК анализатора SDT Q600.

Рис. 1. Результаты ТГА и ДСК анализов взаимодействия В₂Оз с NH₄HF₂ (скорость нагрева – 5 °С/мин; масса навески – 20 мг; атмосфера – Ar)

Активное химическое взаимодействие начинается уже при смешении B_2O_3 с NH_4HF_2 , при 25 °C, что подтверждается растворением смеси в воде, выделяющейся в результате реакции. При нагревании

образовавшейся смеси боратов и фторбората аммония до 91 °С начинается удаление воды и аммиака, характеризующееся эндоэффектом. В интервале температур 202...266 °С происходит фторирование боратов аммония до NH_4BF_4 , который сублимируется в интервале температур 266...363 °С, что характеризуется глубоким эндоэффектом на кривой ДСК. В работе использовали B_2O_3 квалификации «о.с.ч. 12-3», NH_4HF_2 – «х.ч.», а также платиновую посуду.

Для идентификации продуктов реакции был проведен их синтез из стехиометрической смеси, состава B_2O_3 (34 г) и NH_4HF_2 (110 г), по следующей реакции:

$$B_2O_3 + 4NH_4HF_2 = 2NH_4BF_4 + 3H_2O + 2NH_3.$$
 (1)

Продукт 1 получен при температуре 200 °С в течение 5 ч; продукт 2 – прокаливанием продукта 1 при 300 °С в течении 1 ч. Продукты 3 и 4 – это десублимат и остаток, полученные при сублимации продукта 2 при 350 °С. Продукты 1–4 были изучены с помощью ИК-спектрометра NICOLET 6700 Thermo Electron Corporation (рис. 2).

Рис. 2. ИК-спектры продуктов взаимодействия B₂O₃ и NH₄HF₂

В полученных спектрах были обнаружены, характерные для иона аммония полосы поглощения при 3340, 3133, 3034, 2835, и 1403 см⁻¹ [4]. Также в спектрах присутствуют полосы поглощения BF_4^- [5,6] при 1295, 1130, 1090, 1030, 770 и 530 см⁻¹; полоса поглощения NH_4F при 1514 см⁻¹.

В ИК-спектрах продуктов 1 и 2 кроме выше упомянутых полос, также присутствуют, характерные для NH₄F, полосы поглощения при 1805, 1620, 1475 и 722 см⁻¹; и характерная для NH₄HF₂ полоса поглощения при 2097 см-1. Присутствие этих соединений указывает о неполном реагировании исходных веществ. В ИК-спектрах продуктов 2 и 3 присутствуют дополнительные полосы поглощения NH₄F при 1360, 473 и 456 см⁻¹; полоса поглощения, характерная для боратов при 830 см-1. В ИК-спектрах продуктов 1 и 3 обнаружена полоса поглощения BF₄⁻ при 1061 см⁻¹ и полоса поглощения NH₄F при 720 см⁻¹. ИК-спектр продукта 4 имеет характерные для NH₄F слабые полосы поглощения при 485,7 и 1471 см⁻¹ и слабые полосы поглощения при 2104 см⁻¹, характерные для NH₄HF₂.

Продукты 1–4 были исследованы с помощью метода рентгенофазового анализа (рис. 3, 4), который проводили с использованием дифрактометра ДРОН-3М, излучение Cu_{ка}.

Во всех продуктах присутствует тетрафторборат аммония (NH₄BF₄). Продукт 1 содержит также ги-

драты боратов, состава: $NH_4B_5O_6(OH)_4$, $NH_4B_5O_8\cdot 3H_2O$, $(NH_4)_2B_{10}O_{16}\cdot H_2O$, и бифторид аммония NH_4HF_2 , т. е. реакция фторирования при заданной температуре протекает не до конца.

Продукт 2 также содержит $NH_4B_8O_{13}$ · H_2O . Содержание NH_4BF_4 в нём больше, чем в продукте 1, т. е. при повышении температуры происходит фторирование боратов до фторборатов. Анализ продуктов 3 и 4 показал наличие только NH_4BF_4 .

Рис. 4. Рентгенограмма продукта $4: \times - NH_4BF_4$

Данные по ИК-спектроскопии и рентгенофазового анализа указывают на то, что реакция взаимодействия B_2O_3 с NH_4HF_2 при нагревании исходной смеси до 350 °C протекает полностью.

Изучение скорости возгонки продукта 2 (рис. 5) проводили методом непрерывного взвешивания. Продукт 2 выдерживали при 290, 310, 330, 340 °С до постоянной массы. Предположительное уравнение реакции возгонки NH₄BF₄ имеет вид:

$NH_4BF_4 = BF_3 + NH_3 + HF.$

Экспериментальные данные описываются уравнениями сокращающейся сферы.

Зависимость степени сублимации от времени для процесса возгонки NH₄BF₄ описывается выражением:

$$\alpha = 1 - (1 - 161, 6 \cdot \exp(-36213/RT) \cdot t)^3$$

Энергия активации процесса возгонки продукта 2 в температурном интервале 290...340 °C равна 36,2 кДж/моль, процесс лимитируются в кинетической области.

Рис. 5. Зависимости степени сублимации продукта 2 от времени

 $(NH_4)_2SiF_6$ возгоняется в интервале температур 250...330 °С. Энергия активации процесса возгонки $(NH_4)_2SiF_6$ равна 37,55 кДж/моль, процесс лимитируются в кинетической области [7]. Из этого следует, что методом простой возгонки удалить примесь бора из $(NH_4)_2SiF_6$ невозможно.

Рис. 6. Полупромышленная установка для проведения процесса сублимации и десублимации гексафторосиликат аммония: 1) сублиматор; 2) пульт управления нагревом; 3) крышка; 4) (NH₄)₂SiF₆, отделенный от примесей; 5) емкость для сбора (NH₄)₂SiF₆; 6) патрубок подвода охлаждающей воды; 7) соединительный патрубок; 8) десублиматор с охлаждающей рубашкой; 9) патрубок отвода охлаждающей воды

Установка (рис. 6) представляет собой подовую печь — 1 с жестко связанным с ним десублиматором — 8. В печь загружаются до четырех поддонов. Суммарная разовая загрузка может составлять 35 кг исходного продукта. Регулировка печи осуществляется с помощью пульта управления печи — 2 при помощи измерителя-регулятора температуры OBEH TPM 501. Реторта печи закрывается крышкой — 3. В приемную емкость — 5 накапливается гексафторосиликат аммония в виде порошка — 4. Сублиматор с десублиматором — 8 жестко соединен патрубком — 7. Патрубки подвода и отвода охлаждающей воды — 6, 9. Значения температур *t* измеряли с помощью термопар ДТПК 011-0,5/3 в четырех точках: вход и выход охлаждающей воды — t_1 и t_2 , внутри десублиматора и сублимационной печи — t_3 и t_3 . Результаты эксперимента представлены в табл. 1. Площадь десублиматора равна 0,738 м². Расход воды на поддержание температуры сублимации приблизительно от 1 до 2 л/ч.

Эксперимент проводили в течение 9 ч. Значения температур измеряли каждые 30 мин. При начале поступления горячего газа ГФСА в десублиматор 8 температура t_3 начинает расти. Эксперимент проводили с синтезированным образцом (NH₄)₂SiF₆, полученным из фторированного кварцевого песка, сублимированного при 330 °С.

Нагрев проводили поэтапно с выдержкой в 30 мин в каждой точке этапа 100, 200 и 300 °С. Плавный нагрев необходим для обеспечения равномерного прогрева загруженного в сублиматор продукта.

Таблица 1. Значения экспериментальных температур

Время, мин	t ₁	t ₂	t3	t _s	$t_2 - t_1$
0	11	13	28	150	2
30	12	14	40	181	2
60	12	18	50	194	6
90	12	22	66	204	10
120	11	28	75	226	17
150	13	37	88	282	24
180	15	45	93	286	30
210	16	45	101	295	29
240	14	49	110	302	35
270	16	50	114	305	34
300	17	53	119	300	36
330	16	49	116	302	33
360	14	48	116	303	34
390	18	46	111	300	28
420	18	50	114	308	32
450	17	48	120	307	31
480	14	58	117	304	44
510	16	56	120	310	40
540	18	63	128	308	45

Установка выходит в рабочий режим в течение 3 ч. По прошествию 8 ч температура в десублиматоре начинает расти, процесс десублимации заканчивается. В этот момент происходит разложение нелетучих при температуре 300...310 °С фтораммиакатов примесей; выделяются не десублимирующиеся газы.

В приемную емкость продукт начинает десублимироваться при температуре 220 °С и прошествии 2-х часов нагрева. От 220...280 °С выпадает в приемную емкость в основном NH₄F (рис. 7). Из рисунка видно, что получаемое вещество соответствует NH₄F на 83 %. Это доказывает [2], что сублимация (NH₄)₂SiF₆ идет через стадию образования NH₄SiF₅.

В интервале температур 280...310 °С (NH₄)₂SiF₆ в сублиматоре возгоняется и выпадает в приемную емкость -5, рис. 1. При температуре в десублима-

торе 40...50 °C выпадает продукт, в ИК-спектре которого (рис. 8, *a*) присутствует полоса поглощения, характерная для связи Si-O-Si (1090 см⁻¹). С повышением температуры десублимации до 110...120 °C в ИК-спектре (рис. 8, *б*) исчезает полоса, характеризующая связь Si-O-Si; спектр представляет собой типичный спектр гексафторосиликата аммония. При растворении этого соединения образуется прозрачный легкофильтруемый раствор. Сублимацию ТФБА провели при 310 °C и десублимировали при 110 °C. В результате десублимируется БФА, содержащий 10 % ТФБА.

Рис. 7. ИК-спектры NH₄F: (а) полученного при десублимации, (б) справочные данные (базы данных программного обеспечения прибора Nicolet 6700 termo программа Omnic ver. 7.3, база данных HR inorganics индекс 1177, совпадение 83,56 %)

Рис. 8. ИК-спектры (NH₄)₂SiF₆. Продукт получен десублимацией при: а) 40...50; б) 100...120 °С

Для контроля качества гексафторосиликатов, полученных при разных температурах десублимации, были отобраны пробы и проведен элементный анализ на содержание примесей с использованием метода масс-спектрометрии с индуктивносвязанной плазмой. Результаты анализа представлены в табл. 2.

СПИСОК ЛИТЕРАТУРЫ

- Мельниченко Е.И., Крысенко Г.Ф., Эпов Д.Г. Термические свойства (NH₄)₂SiF₆ // Журнал неорганической химии. – 2004. – Т. 49. – № 12. – С. 190–194.
- Мельниченко Е.И., Крысенко Г.Ф., Эпов Д.Г. Химические свойства (NH₄)₂SiF₆ // Журнал неорганической химии. – 2005. – Т. 50. – № 2. – С. 192–196.
- 3. Уэндландт У. Термические методы анализа. М.: Мир, 1978. 526 с.
- Беллами Л. Инфракрасные спектры молекул. М.: Изд-во иностр. лит-ры, 1957. – 445 с.

Таблица 2. Содержание примесей в гексафторосиликате аммония, мас. %

Низкотемпе (NH ₄);	ратурный SiF ₆	Высокотемпературный (NH ₄) ₂ SiF ₆		
В	0,001648404	В	0,000110000	
Na	0,000338372	Na	0,000370146	
Mg	0,000115157	Mg	0,000024514	
Al	0,002347135	Al	0,000049944	
Р	0,006879662	Р	0,000610000	
Ca	0,003013888	Ca	0,004016562	
Sc	0,001671009	Sc	0,000403904	
Ti	0,000287365	Ti	0,000028171	
Fe	0,001365208	Fe	0,000062067	
Cu	0,000301414	Cu	0,000121225	
Zn	0,000044897	Zn	0,000052026	
As	0,004202701	As	0,000010000	
Sb	0,000483475	Sb	0,000012649	
Сумма примесей, %	0,022698687	Сумма примесей, %	0,005871208	
Чистота, %	99,97730131	Чистота, %	99,99412879	

Данные элементного анализа (табл. 2) показывают, что десублимация при 110 °С позволяет избавить ГФСА от примесей, в том числе оксофторосиликатов аммония, дающих гель состава SiO₂·nH₂O при растворении в воде.

Выводы

- Исследовано взаимодействие B₂O₃ с NH₄HF₂. Процесс начинается при 25 °C и протекает с образованием смеси боратов и фторбората аммония. При прогреве смеси до температур выше 91 °C выделяется аммиак и вода. Выше 200 °C смесь боратов аммония фторируется до NH₄BF₄.
- NH₄BF₄ сублимируется в интервале температур 266...363 °С, энергия активации процесса равна 36,2 кДж/моль.
- 3. Десублимация (NH₄)₂SiF₆ в интервале температур 110...120 °С позволяет:
 - понизить содержание бора и фосфора в (NH₄)₂SiF₆ до 10 раз, а примесей алюминия и титана более чем в 100 раз по сравнению с десублимацией при 40...50 °C;
 - получить (NH₄)₂SiF₆, дающий при растворении прозрачный легкофильтруемый раствор.
- Оптимизированы температурные области сублимационной очистки (NH₄)₂SiF₆: сублимация – 300...320 °C, десублимация – 110...120 °C.
- Купцов А.Х., Жижин Г.Н. Фурье-КР и Фурье-ИК спектры полимеров. – М.: Физматлит, 2001. – 582 с.
- Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. – М.: Мир, 1991. – 536 с.
- Крайденко Р.И. Фтораммонийное разделение многокомпонентных силикатных систем на индивидуальные оксиды: Дис. ... канд. хим. наук; 05.17.02. – Томск, 2007. – 135 с.

Поступила 16.04.2010 г.