УДК 66.049.6;661.682

## РАЦИОНАЛЬНАЯ ПЕРЕРАБОТКА КВАРЦСОДЕРЖАЩЕГО СЫРЬЯ ФТОРИДНЫМ СПОСОБОМ

Л.П. Демьянова, А.С. Буйновский\*, В.С. Римкевич, Ю.Н. Маловицкий

Институт геологии и природопользования ДВО РАН, г. Благовещенск \*Северский технологический институт НИЯУ «МИФИ», г. Северск E-mail: larisa-demyanova@ascnet.ru

Предложен фторидный способ рациональной переработки кварцсодержащего сырья под действием бифторида аммония. Описана кинетика процессов взаимодействия исходного сырья с бифторидом аммония, сублимации гексафторосиликата аммония и образования аморфного кремнезема. Определены константы скорости и энергии активации химических реакций.

#### Ключевые слова:

Кварцсодержащее сырье, бифторид аммония, фторидная переработка, взаимодействие, сублимация, гексафторосиликат аммония, аморфный кремнезем.

#### Key words:

Silicacontain raw materials, ammonium deefluoride, processing fluoridation, interaction, sublimation, ammonium hexafluorosilicate, silica amorphous.

За последние десятилетия наблюдается интенсивный рост исследований в области науки и техники, базирующейся на использовании различных форм кремнезема. Разнообразное применение нашли: селективные кремнеземные адсорбенты и поглотители; носители активной фазы в катализаторах; наполнители, в том числе армирующие волокна для полимерных систем; загустители дисперсионных сред, связующие для формовочных материалов; носители для газовой хроматографии и др. Большое развитие получило химическое модифицирование поверхности дисперсного аморфного кремнезема, что дает возможность направленно изменять адсорбционные свойства и технологические характеристики синтезируемых композиционных материалов.

Кварцевые пески являются перспективным сырьем для получения аморфного кремнезема, который используется в различных областях промышленности и пользуется большим спросом на отечественном рынке и зарубежном рынках. Поэтому изучение фторидных процессов рациональной переработки кварцсодержащего сырья с получением чистой силикатной продукции являются актуальными.

Объектами исследования являлись формовочные кварцевые пески, полученные из кварцсодержащего сырья Чалганского месторождения (Амурская область). Среднее содержание оксидов в кварцевых песках по химическому анализу составляет (мас. %): SiO<sub>2</sub> – 95,8; Al<sub>2</sub>O<sub>3</sub> – 2,4; Fe<sub>2</sub>O<sub>3</sub> – 0,2; TiO<sub>2</sub> – 0,16; Na<sub>2</sub>O – 0,13; K<sub>2</sub>O – 1,03; п.п.п. – 0,27. В опытах использовалась основная фракция +0,1...0,4 мм кварцевого формовочного песка (рис. 1, *a*) и ее измельченный материал до –0,0074 мм. Энергодисперсионный спектр подтверждает, что в исходном материале присутствуют примеси Al, Fe, Ti, K и Na (рис. 1, *б*).

В качестве фторирующего компонента применяли бифторид аммония (NH<sub>4</sub>HF<sub>2</sub>) марки «ч.д.а.» производства ОАО «Галоген» (г. Пермь). При температуре 25 °C NH<sub>4</sub>HF<sub>2</sub> не представляет существенной экологической опасности, а при нагревании становится мощным фторирующим реагентом. Температура плавления бифторида аммония составляет 126,8 °C, температура разложения – 238 °C.



**Рис. 1.** Морфология зерен (а) и энергодисперсионный спектр (б) кварцевого песка Чалганского месторождения. (Аналитический центр минералого-геохимических исследований ИГиП ДВО РАН, аналитик: Т.Б. Макеева)

Исходные компоненты, взятые в заданных соотношениях, тшательно перемешивали и помешали в тефлоновые, стеклоуглеродные или платиновые контейнеры – чашки или тигли. Величина навесок составляла 5...40 г. Опыты проводили в электропечи специальной конструкции, где в рабочей безградиентной зоне находился универсальный никелевый реактор (марка никеля НП-2), в котором термически обрабатывали исходные смеси при заданных температурах в течении 0,25...4,5 ч с конденсацией и разделением летучих продуктов. Для сбора летучих продуктов применяли двухзонный конденсатор, изготовленный из нержавеющей стали марки 12Х18Н10Т, поглошение газообразного аммиака происходило в сосуде с водой. Синтез аморфного кремнезема осуществляли в гидролизном аппарате, выполненном из фторопласта, регенерация бифторида аммония происходила в лабораторном выпаривателе-кристаллизаторе. Исходные образцы, промежуточные фазы и конечные продукты исследовали рентгенофазовым методом (ДРОН-3М, Сика-излучение), эмиссионного спектрального (спектрограф СТЭ-1) и химическими методами анализов.

Фторирование кварцевых песков осуществляется в две стадии: взаимодействие кварцевого песка с бифторидом аммония при температуре до 200 °С и сублимация гексафторосиликата аммония (ГФСА) при температурах выше 200 °С.

При фторировании кварцевого песка происходят следующие реакции взаимодействия основного компонента и примесей с бифторидом аммония:

 $2SiO_2 + 7NH_4HF_2 = 2(NH_4)_3(SiF_6)F + 4H_2O + NH_3$ , (1)

$$SiO_2 + 3NH_4HF_2 = (NH_4)_2SiF_6 + 2H_2O + NH_3,$$
 (2)

$$Al_2O_3 + 6NH_4HF_2 = 2(NH_4)_3AlF_6 + 3H_2O,$$
 (3)

$$Fe_2O_3 + 6NH_4HF_2 = 2(NH_4)_3FeF_6 + 3H_2O,$$
 (4)

$$TiO_2 + 3NH_4HF_2 = (NH_4)_2TiF_6 + 2H_2O + NH_3,$$
 (5)

$$Na_2O+NH_4HF_2=2NaF+H_2O+NH_3, \qquad (6)$$

$$K_2O + NH_4HF_2 = 2KF + H_2O + NH_3.$$
(7)

Для выяснения механизма взаимодействия кварцевого песка с бифторидом аммония был проведен синхронный термический анализ в интервале температур от 25 до 450 °C (рис. 2). Анализ проводили на приборе STA 449C Jupiter. Исследования осуществляли в потоке азота (50 см<sup>3</sup>/мин) со скоростью нагрева 2...5 град/мин. Образец помещали в платиновый тигель. В качестве первичного датчика использовали платино-платинородиевую термопару. Анализ проводили на измельченном исходном материале (1) и фракции +0,1...0,4 мм (2) кварцевого формовочного песка, образцы 1 и 2 соответственно.

На дифференциальной термогравиметрической зависимости 1 (рис. 2) фиксируются эндоэффекты с максимумами в точках 76,9, 130,4, 204,0 и 292,4 °C для образца смеси измельченного кварцевого песка с бифторидом аммония. Эндоффект при 292,4 °C наиболее глубокий и широкий, что объясняется протекающего при этой температуре процесса сублимации гексафторосиликата аммония.



Рис. 2. Термоаналитические зависимости (а) и (б) смеси кварцевого песка с №4 НF₂. (Анализ выполнен в ИГиП ДВО РАН, инж. исслед. А.С. Заева)

Величина уменьшения массы продукта в точке 76,9 °С, равная 13,93 %, соответствует расчетным значениям десорбированой воды по реакции (1) – 13,87 %; удаление аммиака (точка 130,4 °С) по ТГ зависимости – 3,98 %, по расчету – 3,27 %. В начале взаимодействия (точка 100,9 °С) происходит образование фазы ( $NH_4$ )<sub>3</sub>SiF<sub>6</sub>·F и ее разложение при повышении температуры до фазы ( $NH_4$ )<sub>2</sub>SiF<sub>6</sub> (точка 204,0 °С).

На основании термогравиметрического анализа можно констатировать, что образованию  $(NH_4)_2SiF_6$  предшествует образование фазы  $(NH_4)_3SiF_6\cdotF$ , которая в точке 204,0 °С полностью переходит в  $(NH_4)_2SiF_6$ . Последний начинает возгоняться уже при 209,6 °С, а его полная сублимация начинает преобладать при температуре выше 292,4 °С, что согласуется с данными, установленными ранее [1–3].

Примесные соединения Al, Fe, Ti, Na, K, образуя фториды, реакции (3–7), остаются в нелетучем остатке. Остаточная масса по данным термического анализа составляет 3,60 %. Эта величина хорошо согласуется с данными, полученными расчетным путем – 3,30 %, реакция (2).

Кинетические исследования процесса взаимодействия кварцевых песков Чалганского месторождения с бифторидом аммония проводились в сушильном шкафу марки СНОЛ-3,5.5.3,5/5. Учитывается, что образование устойчивой фазы ГФСА кубической сингонии происходит при температуре выше 234,6 °С [4], а по результатам термогравиметрического анализа его сублимация начинается при 209,6 °С, все исследования проводили в интервале температур от 100 до 200 °С. Исходные компоненты, взятые в соотношении 1:2,8, тщательно перемешивались и помещались в чашки из фторопласта или стеклоуглерода.

Зависимости степени образования продукта взаимодействия от продолжительности процесса при температуре от 100 до 200 °С представлены на рис. 3. Видно, что в расплаве бифторида аммония взаимодействие с кремнеземом протекает с максимальной скоростью при 200 °С, и за 3 ч степень его превращения во фторидные соли достигает 98 % от теоретически возможного.



Рис. 3. Зависимость степени превращения (α) кварцевого песка во фторидные соли от продолжительности процесса τ при различных температурах

Очистку полученного продукта проводили с помощью сублимации на установке специальной конструкции в температурном интервале 300...450 °С. Летучий ГФСА улавливали и собирали в первой зоне конденсатора. Зависимость степени превращения ГФСА при различных температурах и времени выдержки представлена на рис. 4.



**Рис. 4.** Зависимость степени превращения (α) ГФСА при различных температурах от времени выдержки τ

Таким образом, в соответствии с результатами проведенных экспериментов, а также данными термического и рентгенофазового анализов, взаимодействие измельченного кварцевого песка с бифторидом аммония протекает в две стадии:

I стадия — химическое взаимодействие с образованием фазы (NH<sub>4</sub>),SiF<sub>6</sub>·F (100,9 °C) по реакции (1), и последующим ее разложением при повышении температуры до 209,6 °C с образованием фазы  $(NH_4)_2SiF_6$ :

 $(NH_4)_3SiF_6$ ·F= $(NH_4)_2SiF_6$ + $NH_3$ + $HF_7$ 

II стадия – сублимация начинается и протекает выше этой температуры, что также согласуется с ранее полученными данными [5]:

 $(NH_4)_2SiF_6(TB.)=(NH_4)_2SiF_6(T.).$ 

Стадийность этих процессов можно отобразить следующим образом:

I стадия:

взаимодействие – SiO<sub>2</sub> + NH<sub>4</sub>HF<sub>2</sub>  $\xrightarrow{r=100,9^{\circ}C}$ 

 $(NH_4)_3SiF_6F(TB.), \xrightarrow{t\leq 200\ C} (NH_4)_2SiF_6 (TB.)$ 

II стадия:

сублимация –  $(NH_4)_2SiF_6$  (тв.) <u>r=209,6 °C</u>  $(NH_4)_2SiF_6$  (газ.)

На основании полученных экспериментальных данных были рассчитаны константы скоростей реакций и энергии активации (табл. 1) для I и II стадий.

Таблица 1. Значения констант скоростей к<sub>с</sub> и энергии активации Е₄ взаимодействие и сублимации летучего ГФСА при различных температурах

| Процесс                                                 | T, ℃ | <i>К</i> <sub>с</sub> , МИН <sup>-1</sup> | <i>Е</i> а, кДж/моль |  |
|---------------------------------------------------------|------|-------------------------------------------|----------------------|--|
| Взаимодействие кварцевого<br>песка с бифторидом аммония | 100  | 0,00356                                   |                      |  |
|                                                         | 150  | 0,00539                                   | 12.6                 |  |
|                                                         | 170  | 0,00545                                   | 12,0                 |  |
|                                                         | 200  | 0,00641                                   |                      |  |
| Сублимация ГФСА                                         | 300  | 0,06593                                   | 8,0                  |  |
|                                                         | 350  | 0,09571                                   |                      |  |
|                                                         | 400  | 0,15980                                   |                      |  |
|                                                         | 450  | 0,17980                                   |                      |  |

Найденные значения констант скорости стадий взаимодействия совпадают со значениями констант скорости фторирования кварца, содержащегося в циркониевом концентрате [6]. Однако энергия активации этой стадии (табл. 3) составляет 12,6 кДж/моль против 22,1 кДж/моль, установленной в работе [7]. По-видимому, на это повлияло различие в степени дисперсности исходного материала. Стадия сублимации также характеризуется низкой энергией активации (Е<sub>a</sub>=8 кДж/моль) при относительно высокой константе скорости процесса ( $\kappa_c$ =0,1798 мин<sup>-1</sup> при 450 °C) и должна лимитироваться диффузией молекул (NH<sub>4</sub>)<sub>2</sub>SiF<sub>6</sub> к поверхности сублимации. Следовательно, увеличение поверхности (площади) сублимации и организация перемешивания (или «ворошения») проб должны оказывать положительные влияния на скорость процесса. Необходимо отметить, что дальнейшее повышение температуры не целесообразно, т. к. возрастает доля загрязнений десублимата материалом аппаратуры и повышаются энергозатраты.

Получение аморфного кремнезема проводили с помощью гидролиза отфильтрованного от SiO<sub>2</sub>, 10...25 % раствора ГФСА аммиачной водой при pH=8...9:

 $(NH_4)_2SiF_6 + 4NH_3 + (n+2)H_2O = 6NH_4F + SiO_2 \cdot nH_2O.$ 

Установлено, что использование растворов  $(NH_4)_2SiF_6$  концентрацией менее 10 мас. % для по-

лучения аморфного кремнезема нецелесообразно, т. к. при таких концентрациях образуется труднофильтруемый гель SiO<sub>2</sub>. Повышение концентрации более 25 мас. % ведет к уменьшению выхода конечного продукта и ухудшению его качества. Используемый при гидролизе температурный интервал 30...90 °С обуславливается тем, что повышение температуры выше 90 °С ведет к интенсивному испарению раствора, а менее 25 °С, как показали исследования, получаем продукт худшего качества. Выдерживание полученной суспензии при 30...90 °С в течении 0,5...1,5 ч способствует стабилизации системы и значительному улучшению ее фильтруемости.

Раствор после фильтрования кремнезема, содержащий NH<sub>4</sub>F, используют для регенерации бифторида аммония:

## $2NH_4F=NH_4HF_2+NH_3\uparrow$ ,

который можно повторно использовать для фторирования исходного сырья.

Данные рентгеновской фотоэлектронной спектроскопии (Анализ выполнен на приборе VG 220 i-XL ESCALAB (Thermo Fisher Scientific. 2000), Институт химии твердого тела, Национального научного центра Франции, г. Бордо, аналитик Christine Labrugere) показывают, что содержание присутствующих на поверхности образцов аморфного кремнезема элементов составляет (мас. %): 18,24 (Si), 47,50 (O), 4,45 (F), 29,81 (C).

Анализ данных свидетельствует о наличии на поверхности аморфного кремнезема фтора и углерода. Причем фтор присутствует в виде  $(NH_4)_2SiF_6$ , а наличие углерода объясняется попаданием его из стеклоуглеродного тигля, используемого при обработке кварцевого песка бифторидом аммония. При использовании реактора из фторопласта содержание углерода на поверхности аморфного кремнезема снижается до 1,2 мас. %.

Площадь удельной поверхности кремнезема составила 98 м<sup>2</sup>/г, размер наночастиц порядка 20 нм, среднее значение размера пор около 3 нм. Полученный аморфный кремнезем характеризуется отсутствием микропор. Содержание примесей, в том числе красящих, по данным спектрального анализа не превысило 10<sup>-4</sup> мас. %.

Анализ технических характеристик аморфного кремнезема, полученного по фторидной технологии [8], в сравнении с характеристиками аморфных кремнеземов, выпускаемых промышленностью, показал, что он подходит по своим свойствам и областям применения к гидрофобному кремнезему AEROSIL R972 (табл. 2).

На основании результатов исследований предложена малоотходная технологическая схема рациональной переработки кварцсодержащего сырья с получением аморфного кремнезема (рис. 5). Получение аморфного кремнезема осуществляли из кварцевых песков с использованием бифторида аммония без применения специальной кислотоупорной аппаратуры при невысоких материало- и энергозатратах [9].

| Габлица 2. Характеристики кремнеземов AEROSIL марки R 972 |
|-----------------------------------------------------------|
| (1) и, полученного с помощью предлагаемой фто-            |
| ридной переработки из кварцевых песков Чалган-            |
| ского месторождения Амурской области (II)                 |

| Характеристики                                  |        |      |
|-------------------------------------------------|--------|------|
| Площадь удельной поверхности, м <sup>2</sup> /г | 110±20 | 98   |
| Плотность набивки, г/л                          | 50     | 50   |
| Потери при сушке, 2 ч при 105 °C, мас. %        | <0,5   | <0,5 |
| Содержание углерода, мас. %                     | 0,61,2 | 1,2  |
| рН                                              | 3,64,4 | 4    |



**Рис. 5.** Технологическая схема получения аморфного кремнезема из природных кварцевых песков Чалганского месторождения Приамурья

### Выводы

- Доказано, что фторидная переработка измельченного кварцевого песка и бифторида аммония при оптимальном стехиометрическом отношении 1:2,8 проходит в две стадии: 1) химическое взаимодействие с образованием фаз (NH<sub>4</sub>)<sub>3</sub>SiF<sub>6</sub>F и (NH<sub>4</sub>)<sub>2</sub>SiF<sub>6</sub> при температурах выше 100,9 °C; 2) сублимация (NH<sub>4</sub>)<sub>2</sub>SiF<sub>6</sub> при температурах выше 209,6 °C. Механическое измельчение кварцевого песка до 100 мкм (исходный от 0,8 до 2,7 мм) активирует процесс получения промежуточного продукта и понижает температурур примерно на 50 °C.
- Проведение процесса сублимации позволяет получить химически чистый (NH<sub>4</sub>)<sub>2</sub>SiF<sub>6</sub>, который обрабатывали аммиачной водой концентрацией 10...25 % при рН 8...9 и температуре 25 °C, с образованием аморфного кремнезема с содержанием примесей менее 1·10<sup>-4</sup> мас. % и размером наночастиц порядка 20 нм.

Работа выполнена при частичной финансовой поддержке ДВО РАН (грант 06-3А-02032) и РФФИ — ДВО РАН «Дальний Восток» (грант № 06-05-96041).

#### СПИСОК ЛИТЕРАТУРЫ

- Мельниченко Е.И., Крысенко Г.Ф., Эпов Д.Г., Марусова Е.Ю. Термические свойства (NH<sub>4</sub>)<sub>2</sub>SiF<sub>6</sub> // Журнал неорганической химии. – 2004. – Т. 40. – № 12. – С. 1943–1947.
- Куриленко Л.Н., Лапташ Н.М., Меркулов Е.Б., Глущенко В.Ю. О фторировании кремнийсодержащих минералов гидродифторидом аммония // Эл. журнал «Исследовано в России». – 2002. – 130/021011. – С. 1465-1471.
- Буйновский А.С., Гузеев В.В., Дьяченко А.Н. Исследование процесса фтороаммонийной переработки топазового концентрата // Известия вузов. Физика. – 2004. – Т. 47. – № 12. – С. 76–80.
- Химическая энциклопедия. Т. 1. М.: Советская энциклопедия, 1988. С. 282.
- Рысс И.Г. Химия фтора и его неорганических соединений. М.: ГНТИХЛ, 1965. – 401 с.
- Крысенко Г.Ф. Фтороцирконаты аммония в синтезе фторидов и технологии циркония: автореф. ... канд. техн. наук. – Владивосток, 1999. – 24 с.

- Левченко Л.М., Митькин В.Н., Шавинский Б.М., Шелудякова Л.А., Колесов Б.А. Новые углерод-фторуглеродные нанокомпозитные сорбенты для извлечения ионов натрия из водных растворов // INTERSIBFLUORINE-2006: Труды II Междунар. сибирского семинара. – Томск, 2006. – С. 153–162.
- Демьянова Л.П., Трессо А., Бюзаре Ж. Ю., Мартино Ш., Лежьен К., Маловицкий Ю.Н., Римкевич В.С. Изучение свойств аморфного кремнезема, полученного фторидным методом // Неорганические материалы. – 2009. – Т. 45. – № 2. – С. 188–193.
- Способ переработки кремнеземсодержащего сырья: пат. 2286947 Рос. Федерация. № 2004110338/15; заявл. 05.04.2004; опубл. 10.11.2006. Бюл. № 31. – 5 с.

Поступила 29.06.2010 г.

УДК 666.291.3

# ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЯ ПРЕДЕЛОВ РАСТВОРИМОСТИ ХРОМОФОРОВ В СИЛИКАТНЫХ СТРУКТУРАХ КЕРАМИЧЕСКИХ ПИГМЕНТОВ

М.Б. Седельникова

Томский политехнический университет E-mail: smb@mail.tpu.ru

Изучены закономерности встраивания ионов-хромофоров в зависимости от их зарядности и ионных радиусов в кристаллическую структуру природных силикатов. Сравнение параметров координационных полиэдров показало, что ионы кобальта могут встраиваться в позиции кальция и магния в структурах волластонита и диопсида, ионы хрома могут встраиваться только в позиции магния. В структуре цеолита изоморфные замещения идут за счёт обменных катионов, располагающихся в каналах и пустотах каркасной структуры. Установлено, что введение 5...10 мас. % хромофоров в сформированную кристаллическую структуру не вызывает значительных искажений вмещающей кристаллической решётки.

#### Ключевые слова:

Природные силикаты, хромофор, ионный радиус, кристаллическая структура. *Key words:* 

Natural silicates, chromophore, ion radius, crystal structure.

### Введение

Основным принципом, лежащим в основе научной классификации керамических пигментов, является структурный подход, в соответствии с которым свойства пигментов, особенности их синтеза и применения зависят от типа их кристаллической структуры. Впервые классифицировать пигменты по классам кристаллических решёток, а не по окраске и хромофору было предложено С.Г. Тумановым [1]. Данная структурная классификация керамических пигментов была дополнена и расширена благодаря работам И.В. Пища, который ввёл новую, расширенную классификацию керамических пигментов [2]. Согласно этой классификации на основе силикатов могут быть получены пигменты различных цветов с температурой синтеза 1000...1250 °C.

Предложенная классификация учитывает наличие модификаторов — щелочных и щелочноземельных оксидов, особенности строения кристаллических решёток. На основе силикатов изолированной структуры получаются жаростойкие пигменты ярких цветов. В такой структуре возможны широкие изоморфные замещения отдельных оксидов, входящих в состав силикатов, на оксиды переходных металлов и образование твёрдых растворов. При синтезе пигментов на основе силикатов цепочечной структуры получаются низкотемпературные пигменты. Цветонесущая фаза в таких пигментах представлена метасиликатами переходных металлов, красящими оксидами и твёрдым раствором [Ca, Mg]SiO<sub>3</sub>. Также низкотемпературные пигменты получаются на основе силикатов каркасной структуры (альбита, микроклина). Кристаллическая структура таких пигментов представлена окрашивающими комплексами d-элементов, микроклином, санидином. На основе слоистых силикатов получают жаропрочные муллитоподобной