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Abstract. Modeling and processing software, as well as experimental units, developed 
at Tomsk Polytechnic University for the last decade in the field of thermal/infrared 
nondestructive testing, are shortly described in this paper along with some illustrations 
of using this technique in the detection of impact damage in composites and corrosion 
in metals. 

1.  Introduction  
A strong demand for high quality of technical installations and responsible parts in high-tech 
industries, such as military, aero space, automotive, ship building and power production, continues to 
stimulate development of novel and combined techniques of nondestructive testing (NDT). For the last 
decades, the so-called “big five” NDT methods have been: X-ray, ultrasonic, eddy current, magnetic 
particle and liquid penetrants [1]. Presently, thermal nondestructive testing (TNDT) is often included 
in this list as an indispensable method due to the following [2, 3]: 1) TNDT can be applied to all types 
of solids even if particular materials pose a certain challenge for efficient inspection, 2) TNDT is very 
fast, thus being considered as a screening technique operating in combination with others, 3) TNDT is 
illustrative, and human being’s skills in interpreting ‘images’ can be useful in treatment of infrared 
(IR) images, and 4) TNDT is safe and often portable that is important when conducting NDT in public 
places. 

Tomsk Polytechnic University has long traditions in TNDT. In the Soviet period, the research 
emphasis was done on development of specialized NDT hardware based on Russian-made 
components, because foreign IR imagers used to be practically unavailable in the former USSR in that 
period of time. Since the 1990s, the research focus was shifted onto software, both for modeling and 
data processing. Two major software packages have been developed and continuously modernized for 
the last years: ThermoCalc-6L and its modifications (simulation of TNDT problems) and ThermoFit 
Pro (processing experimental and synthetic IR image sequences). 

Presently, certain efforts are being inputted in the development of a portable unit for performing 
active thermal NDT in both laboratory and outdoor conditions.  

First of all, the research target is inspection of composite materials, mainly used in aviation, such as 
carbon and glass fiber reinforced plastics (CFRP and GFRP) and honeycomb structures. Another 
research area is the detection of hidden corrosion in above-ground steel tanks, piping, tanks, etc. In 
both areas, the above-mentioned advantages of TNDT are fully realized. 
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2.  TNDT setups  
The concept is to develop both experimental laboratory systems and portable units for in-field 
inspection. A flexible laboratory system for active TNDT is shown in figure 1a in its implementation 
to corrosion detection in steel containers intended for keeping low-active radioactive wastes. A 
cylindrical test object is rotated being stopped for about 20 seconds needed for inspection in each 
position. An IR imager captures from 20 to 100 IR thermograms which are processed, and results are 
exhibited as raw or binary images. Images taken at each check position are composed to present 
circular evolution of temperature (figure 1b). Several IR imagers can be used in this system (FLIR P-
65, Nec Avio-9100, FLIR-A325 SC and FLIR SC 7700M IR cameras are currently used at Tomsk 
Polytechnic University). There are a couple of heat sources which are used in the system, for instance: 
1) Xenon flash lamps, and 2) halogen lamps (shown in figure 1a). 

 

 
a) 

10 image sequences constitute cylinder evolution 

 

Binary map of defects produced by means of neural network 

 
b) 

Figure 1. Laboratory setup for active TNDT including NEC Avio IR camera and 2 halogen lamp 
heaters (a) and example of test results (b). 

 
A portable IR thermographic unit implements the same principle of active TNDT but allows out-

door operation by one or two thermographers. The current unit is presented in figure 2a. Four halogen 
lamps 500 W each illuminate an object to be tested, such an airplane panel, for a controllable time 
(typically, 3-15 s). Since the heat source is turned off, its residual thermal radiation is cut off by means 
of a 4-lamella mechanical shutter thus preventing reflected radiation that is a notorious source of noise 
in one-sided TNDT. 

The illustrations of using the portable unit in NDT are shown in figure 2b, c. When checking 
airplane panels made of honeycombs, there is an inspection problem of distinguishing between water 
and epoxy glue hidden in honeycomb cells. Water represents a serious exploitation problem because 
its presence leads to honeycombs damage [4]. However, water surface thermal ‘footprints’ can be 
easily confused with those of epoxy glue due to close amplitudes of differential temperature signals 
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∆T (figure 2b, left). However, specialized data treatment based on the analysis of the T(τ).τn synthetic 
temperature function as a novel processing algorithm proposed in [5] allows fairly good discrimination 
between two defective sites (figure 2b, right). 

Another example of using TNDT in the inspection of impact damage in a 4 mm-thick CFRP 
sample (low-velocity 59 J impact) is presented in figure 2c. The raw temperature image bears no 
detailed information about structure of the induced defect. Better results have been obtained by 
applying the algorithms of dynamic thermal tomography proposed at Tomsk Polytechnic University in 
the 1980s, see more details the recent paper [6]). The tomograms in figure 2c exhibit sample structure 
within three different layers and clearly show that cracks (delaminations) induced by the impact are 
minor on the impacted surface but become larger with material depth, This is in accordance with the 
known fact that impact damage can be invisible on the airplane outer surface but cause significant 
damage deeper in the composite, often closely to the panel rear surface. 

 

 
a) 

  
b) 
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Maxigram Timegram Tomogram 
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0.89 mm) 

Tomogram 
(1.03- 

1.63 mm) 

Tomogram 
(1.92-

2.27mm) 
 

c) 
Figure 2. Portable IR thermographic NDT unit and examples of test results: a – unit photo;  

b – distinguishing between hidden water and epoxy glue;in honeycomb panel (left – best raw image, 
right – result of processing by using the analysis of T.τ0.43 synthetic function [5]); c – thermal 

tomography of impact damage in 4 mm-thick CFRP sample (one-sided inspection, 59 J impact 
energy). 

 
Some technical characteristics of the portable unit from figure 2a are given in table 1. 
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Table 1. Technical characteristics of portable IR thermographic NDT unit (figure 2a). 
Parameter Value 

Test objects and their thickness Steel, titanium, aluminum (up to 6 mm*) 
CFRP and other composites (up to 4 mm*) 

Test area 0.04 m2 
Test productivity 4.7 m2.hr-1 
Minimum detectable materials loss in steel ** 10 % 
Minimum lateral size of detectable defects in 
composites ** 

10 mm 

Temperature sensitivity 0.02-0.06 oC *** 

Power supply 220 V AC 
Mass 5–10 kg 

* Depending on a used heat source 
** Depending on sample thickness and some test parameters 
***Depending on a used IR imager  

 
Another concept of a portable IR thermographic NDT unit is shown in figure 3a. It differs from that 

in figure 2a by the use of two LED heat sources, 500 W each. Such heaters only recently started to be 
used in TNDT. Their advantage in comparison with lamps is the monochromatic operation mode 
involving radiation in the visual band from 0.3 to 0.7 µm. Since IR imagers normally operate at 
wavelengths from 3 to 5 or from 7–13 µm, LED heaters produce no reflected radiation sensed by IR 
imagers. Unfortunately, because of high reflectivity of many materials at these wavelengths, the LED 
radiation may be inefficient to warm a test sample up to a required temperature. The corresponding 
illustration is given in figure 3b in the detection of hidden corrosion 25 % material loss in a 1 mm-
thick steel sample) by using both halogen lamps and LED heaters. This example shows that LEDs 
provide worse detection results although their power is much less than in the case of 30 kW halogen 
lamps. 

 

   
a) b) 

Figure 3. Concept of a portable IR thermographic unit using LED heat source (a) and corrosion 
detection in 1 mm-thick steel sample by applying 30 kW halogen lamps (left) and 2×500 W LEDs 

(right) heat sources; the sample contained 5 sites of rear-surface 25 % material loss of different size. 
 

3. Determining TNDT detection limits 
It is very typical for end-users to ask about detection limits of NDT methods and particular equipment. 
To answer this question is particularly difficult in TNDT because test results depend on many factors, 
such as defect size by all coordinates, defect depth, type of material and surface conditions, type of a 
used heat source, wavelength band, IR imager temperature resolution, etc. 
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The corresponding approach allowing the evaluation of minimum detected defects has been 
proposed by combining results of modeling and experimental estimates of the noise adhering to each 
particular test case. 

Modeling is done by using a software package developed at Tomsk Polytechnic University and 
allowing calculation of surface temperature signals in 1D, 2D and 3D cases. The Layer-3 Analytic, 
ThermoCalc-2D and ThermoCalc-36L programs with their many modifications are simple and robust 
enabling calculation of temperature distributions over hidden defects. The main calculated parameters 
are differential temperature signals ∆Tm and temperature contrasts Cm, as well as times of their 
appearance τm. 

A detailed description of modeling is beyond the scope of this paper, see the handbook [2]. Let us 
consider the detection of delaminations in CFRP as an example. The temperature signals that can be 
achieved in this test case depend on defect depth and size and duration of heating, as demonstrated by 
figure 4, where the curve family has been calculated by using the ThermoCalc-36L software for 
solving the corresponding 3D heat conduction model (see details in [3]). The contrast C=∆T/T is a 
dimensionless parameter which shows a relative temperature signal in regard to sample excess 
temperature T. Each material, while being heated, is characterized by the temperature noise contrast 
conditioned by uneven heating and surface clutter. It is important that such noise increases 
proportionally with excess temperature, therefore, it can be expressed in percent to characterize each 
particular material. For example, it has been experimentally found that CFRP composite has noise 
contrast from 1-2 %, hence, its level is often assumed to be 5 % (at the level of 2-3 standard 
deviations). If to draw a horizontal line in figure 4 corresponding to 5 %, its crossings with family 
curves will specify minimum detectable defects. It follows from figure 4 that, in one-sided TNDT of a 
5 mm-thick CFRP samples, delaminations of various lateral size and thickness can be detected to the 
depths of 3.3-4 mm that matches well earlier published experimental results [2]. 

 

 
 

Figure 4. Determining defect detection limit by depth in TNDT of 5 mm-thick CFRP. 

The same approach applied to the detection of corrosion in steel is shown in figure 5. The thickness 
of steel samples heated with a thermal pulse was 1, 5 and 10 mm and the size of a corroded area was 
10×10 m. The noise level was assumed 10 % that corresponds to many painted metallic surface. It is 
seen that, in this case, the detection limit is 10-40% by material loss depending on sample thickness. 
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Figure 5. Determining corrosion detection limit by material loss in steel. 

 
4. Conclusion 
A universal character of thermal/infrared NDT allows developing universal inspection units which 
may be used for testing a wide range of materials and objects. This feature, along with illustrativeness 
and high productivity of the thermal methodб makes it attractive as a screening inspection technique 
which can be used solely or in combination with other NDT methods. Composites constitute the most 
successful application area for thermal NDT, particularly, in aviation where large areas subject to 
NDT and safety requirements make difficult using other NDT methods. Another perspective 
application area is the detection of corrosion in metallic shells. The thermal/infrared NDT research 
being conducted at Tomsk Polytechnic University involves the development of both software and 
hardware, as well as inspection guidelines and approaches for determining NDT limits. 
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