УДК 665.613.23;622.276/.279

ИЗМЕНЕНИЕ СОСТАВА И СВОЙСТВ ВЫСОКОВЯЗКОЙ НЕФТИ ПРИ ВОЗДЕЙСТВИИ КОМПОЗИЦИЙ ДЛЯ УВЕЛИЧЕНИЯ НЕФТЕОТДАЧИ ПЛАСТА

О.В. Серебренникова, С.Н. Шерстюк, Л.Д. Стахина, П.Б. Кадычагов

Институт химии нефти СО РАН, г. Томск E-mail: sl@ipc.tsc.ru

Изучены изменения состава и свойств промысловых проб высоковязкой высокосмолистой нефти Усинского месторождения (Республика Коми) в результате воздействия на пласт горячим паром, а также нефтевытесняющими композициями. Установлено, что под действием таких композиций в добытой нефти происходит увеличение содержания насыщенных углеводородов, снижение содержания ароматических углеводородов. Показано, что содержание смолисто-асфальтеновых веществ возрастало в первые месяцы после обработки пласта композициями, а затем постепенно снижалось. Комплексное воздействие пара и нефтевытесняющей композиции на пласт приводит к возрастанию в нефти содержания как насыщенных, так и ароматических углеводородов, снижению ее плотности.

Ключевые слова:

Тяжелые высоковязкие нефти, технологии нефтеотдачи, нефтевытесняющие композиции, насыщенные и ароматические углеводороды, органические кислоты, состав, свойства.

Kev words:

Heavy-viscosity oils; EOR technologies; oil-displacement systems; group composition; saturated and aromatic hydrocarbons; organic acids; petroporphyrins.

В настоящее время в России крупные месторождения характеризуются значительным истощением наиболее продуктивных пластов, высоким содержанием воды в добываемой нефти. В эксплуатацию вводятся новые месторождения со сложным геологическим строением и ухудшенными коллекторскими свойствами, затрудняющими извлечение нефти. В стране, также как и за рубежом, неуклонно возрастает доля месторождений высоковязких нефтей и битумов. Поэтому важное значение приобретают методы повышения эффективности разработки месторождений, создание новых технологий, приводящих к наиболее полному извлечению нефти из недр. Решение проблемы повышения эффективности разработки месторождений с трудно извлекаемыми запасами связано с созданием новых и усовершенствованием существующих физико-химических методов, обеспечивающих более полное извлечение нефти и уменьшение объемов добычи попутной воды [1].

Комплексное применение методов увеличения нефтеотдачи может приводить к изменению состава и свойств пластовых нефтей, как за счет химического превращения компонентов нефти (воздействие высоких температур, химических реагентов, окисление минерализованной водой, воздействие микроорганизмов), так и за счет процесса доотмыва нефти и вовлечение остаточных нефтей низкопроницаемых коллекторов пласта. Немаловажное значение имеет также изучение состава и свойств добываемых с помощью новых технологий нефтей, которые в дальнейшем будут направлены на нефтепереработку.

Цель настоящей работы заключалась в исследовании влияния физико-химических методов повышения нефтеотдачи в процессе эксплуатации скважин на динамику изменения состава тяжелых высоковязких нефтей пермо-карбоновой залежи Усинского месторождения (Республика Коми).

Экспериментальная часть

Исследованные промысловые пробы нефти Усинского месторождения включали 10 проб из верхнего (ВО), среднего (ВО-СО) и нижнего объектов (СО-НО, НО) пермо-карбоновой залежи, из которых 2 пробы нативной нефти были отобраны из пластов (скважины №№ 3000, 2983), разрабатываемых в естественном режиме (не подвергавшихся воздействию пара и нефтевытесняющих композиций), 1-я проба нефти отобрана из пласта (скв. № 1073), разрабатываемого путем паротеплового воздействия (ПТВ), 6 проб нефтей, отобранных в определенном интервале времени из пластов (скважины №№ 3063, 6111), в которые были закачаны нефтевытесняющие композиции НИНКА и нетрольная, разработанные в ИХН СО РАН (табл. 1) [2, 3].

Нефтевытесняющая композиция НИНКА состоит из карбамида (32 %), аммиачной селитры (16 %), поверхностно-активного веществ (ПАВ — 2 %), пластовой воды (50 %). При использовании композиции карбамид гидролизуется с выделением аммиака и углекислого газа. Углекислый газ растворяется в нефти, что приводит к возрастанию ее объема и, соответственно, увеличению фазовой проницаемости коллектора по нефти, а также снижению вязкости нефти, повышению гидрофильности и проницаемости породы.

Аммиачная селитра с аммиаком, получающимся в пласте в результате гидролиза карбамида, образует щелочную систему с высокой буферной емкостью в интервале рН от 9,0 до 10,5 и в 3,5 раза снижает набухаемость бентонитовых глин и глинистых цементов коллектора. Применение одного из ПАВ (Нефтенол, АФ 9-12, NP-50) позволяет значительно снизить межфазное натяжение нефти на границах с водным слоем и породой, что существенно влияет на механизм и эффективность вытеснения нефти.

В состав нефтевытесняющей нетрольной композиции входят ПАВ, карбамид и нетрол. Промышленный реагент нетрол – твердое соединение включения (клатрат) карбамида и неорганических азотной фосфорной, И $HNO_3 \cdot (NH_2)_2 CO + H_3 PO_4$, основную часть составляет азотная кислота. Композиция за счет паротеплового воздействия и взаимодействия нетрола с карбонатной породой генерирует в пласте СО₂, аммиак и щелочную буферную систему. Образующийся в пласте СО₂ вызывает снижение вязкости нефти, что вызывает благоприятное изменение соотношения подвижностей нефти и водной фазы. ПАВ совместно со щелочной буферной системой способствует деструкции, разжижению межфазных высоковязких слоев или пленок, образующихся на границах нефть – вода – порода. Для практического применения в качестве реагента для кислотных обработок скважин применяют 10 %-ный раствор нетрольной композиции в пластовой воде.

Определение содержания органических (нафтеновых кислот) в нефтях проводили потенциометрическим титрованием спиртовым раствором щелочи на pH-метре «pH-150MA» [4]. Расчет содержания (мас. %) СООН-групп и свободных нафтеновых кислот C_{κ} проводили по формулам:

$$C_{\text{COOH}} = (V_t - V_0) N_t m \cdot 45/10;$$

 $C_{\text{K}} = C_{\text{COOH}} \cdot \text{MM/45},$

где V_t , V_0 — объемы (мл) раствора щелочи (гидроксида калия), израсходованные при титровании пробы до точки эквивалентности и в холостом опыте, соответственно; N_t — концентрация раствора титранта (щелочи), моль/л; 45 — эквивалент СООН-группы; m — масса пробы нефти, r; MM — молекулярная масса нафтеновых кислот (300 а.е.м).

Групповой (компонентный) состав нефтей (содержание насыщенных и ароматических углеводородов, смол) определяли методом жидкостно-адсорбционной хроматографии деасфальтенизата на двойном сорбенте: силикагель и оксид алюминия (II степени активности) по методике ВНИГРИ [5]. Элюирование фракций насыщенных углеводородов (масла), ароматических углеводородов и смол проводили последовательно гексаном, бензолом и смесью спирт-бензола (1:1 по объему). Предварительно из нефтей были выделены и определены гравиметрически асфальтены холодным методом Гольде [6].

Определение индивидуального состава углеводородов (насыщенных и ароматических) проводили с использованием квадрупольного хроматомасс-спектрометра R-10-10C фирмы «NERMAG» (Франция). В приборе использован принцип присоединения капиллярной колонки к масс-анализатору без применения сепаратора. Хроматограф: колонка «SUPELCO», неподвижная фаза — SPB-5 (SE-54); газ-носитель — гелий, режим: изотермический с последующим нагревом $T_{\rm нач}$ =70 °C, $T_{\rm макс}$ =280 °C, затем с выдержкой в изотермических условиях до полной очистки колонки. Масс-спек-

трометр: метод ионизации — электронный удар; энергия ионизирующих электронов 70 эВ; температура ионизационной камеры 230 °С; диапазон регистрируемых масс 33-400 а.е.м.; длительность развертки спектра — 0,4 с.

Результаты и их обсуждение

Нами было изучено изменение содержания нафтеновых кислот в нефтях, добытых из скважин, подвергнутых воздействию нефтевытесняющих нетрольных композиций (скв. № 3063) и НИНКА (скв. № 6111, 1073) в процессе разработки (через 11 и 22 мес.).

В табл. 1 представлены результаты определения нафтеновых кислот в исследуемых пробах Усинских нефтей.

Таблица 1. Характеристика исследуемых нефтей и содержание в них нафтеновых кислот

Nº CKB.	Дата отбора	Интервал перфора- ции, м	Способ нефте- вытеснения, композиция	Объект	Содержа- ние наф- теновых кислот, мас. %	
3000	02.2007	12661284	Без композиции	ВО	1,4	
3063	02.2007	13891429	Нетрольная	BO-CO	0,7	
3063	12.2007	13891429	Нетрольная	BO-CO	2,6	
3063	11.2008	13891429	Нетрольная	BO-CO	3,7	
2983	02.2007	13951396	Без композиции	НО	1,2	
6111	02.2007	12811299	НИНКА	CO-HO	0,9	
6111	12.2007	12811299	НИНКА	СО-НО	1,1	
6111	11.2008	12811299	НИНКА	СО-НО	2,2	
1073	12.2007	1185,51228	ПТВ	ВО	1,8	
1073	11.2008	1185,51228	НИНКА+ПТВ	ВО	1,5	

Результаты исследований показали, что для Усинских нефтей характерно относительно высокое содержание нафтеновых кислот (0,7...3,7 мас. %) независимо от методов разработки залежей.

Содержание нафтеновых кислот в нефти в первые месяцы (02.2007) после введения нетрольной композиции в пласт (скв. № 3063) снизилось в 2 раза, а уже через 11 и 22 мес. увеличилось на 85 и 165 % отн., соответственно. Аналогичным образом изменилось содержание нафтеновых кислот в нефти, добытой из пласта, в который была введена композиция НИНКА (скв. № 6111): через месяц после закачки содержание кислот в нефти снизилось, но через 22 мес. возросло практически вдвое. Воздействие в комплексе ПТВ и композиции НИНКА привело к незначительному снижению содержания нафтеновых кислот в нефти (скв. 1073). Изменение содержания нафтеновых кислот может быть связано с доотмывом более тяжелых высокомолекулярных компонентов нефти с породы при помощи нефтевытесняющих композиций.

С целью изучения влияния воздействия композиций на содержание основных групп соединений (насыщенных, ароматических углеводородов и

смолисто-асфальтеновых веществ) пробы нефтей, полученных из скважин на месторождении, подвергали анализу методом жидкостной адсорбционной колоночной хроматографии [5]. Характер изменения группового состава образцов нефтей, полученных из пластов после обработки нефтевытесняющими композициями, представлен в табл. 2: нетрольной композицией (скв. № 3063), композицией НИНКА в сочетании с паротепловым воздействием (скв. № 1073), соответственно. Содержание легкой фракции (н.к. — 200 °C) рассчитывали по разности между массой исходного образца нефти и суммарным содержанием масел, смол и асфальтенов в пробе.

Как показали результаты анализа группового состава, для нефтей Усинского месторождения характерно высокое содержание асфальтенов и смол. В нефтях, добытых из пластов, не подвергнутых обработке композициями и паротепловым воздействием (скважины №№ 3000, 2983), содержание смол находится в пределах 7,0...8,3 мас. %, асфальтенов 7,0...7,4 мас. %.

В нефти, полученной из пласта, обработанного нетрольной композицией (скв. № 3063) через 1 мес. повысилось содержание смол, через 11 мес. — смол и асфальтенов, но по истечении 22 мес. в количество смолисто-асфальтеновых соединений снизилось до исходного состояния.

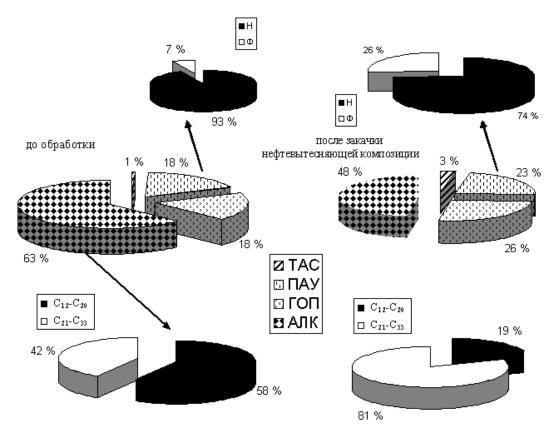
Таблица 2. Групповой состав нефтей Усинского месторождения

			Содержание, мас. %				
Nº CKB.	Дата отбора	Способ нефте- вытеснения, композиция	Фракция н.к. – 200 °C	Масла	Ароматические углеводороды	Смолы	Асфальтены
3000	02.2007	Без композиции	22,8	24,1	38,7	7,0	7,4
3063	02.2007	Нетрольная	16,3	23,5	40,3	12,5	7,4
3063	12.2007	Нетрольная	1,1	57,2	15,4	13,7	12,6
3063	11.2008	Нетрольная	13,3	36,4	31,4	10	8,9
2983	02.2007	Без композиции	25,0	34,3	25,4	8,3	7,0
6111	02.2007	НИНКА	22,5	33,5	28,6	7,2	8,2
6111	12.2007	НИНКА	16,4	50,2	18,1	7,4	7,9
6111	11.2008	НИНКА	26,1	35,2	21,6	9,2	7,9
1073	12.2007	ПТВ	4,8	48,9	21,6	14,9	9,8
1073	11.2008	НИНКА+ПТВ	24,2	33,7	24,3	8,4	9,4

Применение композиции НИНКА не отразилось подобным образом на содержании смолистоасфальтовых компонентов в нефти за весь период наблюдения.

Данные хроматографии показали также, что в результате воздействия нетрольной композиции (скв. № 3063) в нефти произошло существенное увеличение доли насыщенных (парафино-нафтеновых) углеводородов (суммарно фракции н.к. — 200 °С и масел) за счет снижения содержания аро-

матических углеводородов. В распределении парафино-нафтеновых углеводородов увеличилась доля масел за счет снижения содержания легкой фракции (н.к. — 200 °C). Через 22 мес. групповой состав нефти практически достиг исходного состояния.


В результате воздействия на пласт композиции НИНКА в нефти (скв. № 6111) также, как и при обработке нетрольной композицией, в первые 11 месяцев произошло увеличение доли парафино-нафтеновых углеводородов (суммарно фракции н.к. — 200 °С и масел) за счет снижения содержания ароматических углеводородов. Среди парафино-нафтеновых углеводородов увеличилась доля масел за счет уменьшения содержания легкой фракции (н.к. — 200 °С). С течением времени групповой состав нефти практически возвратился к исходному.

В результате введения композиции НИНКА в пласт, разрабатываемый при паротепловом воздействии (скв. № 1073), в добываемой нефти через 11 мес. произошло снижение в 1,5 раза содержания смолисто-асфальтеновых компонентов, особенно смол, а также плотности нефти (от 952,8 до 929,9 кг/м³). Возросло содержание насыщенных и ароматических углеводородов.

Анализ хромато-масс-спектральных данных показал, что в составе углеводородов в результате комплексной обработки пласта паром и композицией НИНКА (скв. № 1073) содержатся насыщенные углеводороды: алканы (АЛК), пентациклические тритерпаны – гопаны (ГОП); ароматические углеводороды: нафталины (Н), фенантрены (Ф), полициклоароматические углеводороды (ПАУ), триароматические стераны (ТАС). В результате обработки пласта в нефти увеличилось содержание гопанов (с 18 до 26 отн. %) и аренов (с 18 до 23 отн. %) (нафталины, фенантрены, полициклоароматические углеводороды, триароматические стераны) (рисунок). В свою очередь, среди аренов в 3 раза возросла доля фенантренов, а среди н-алканов — C_{21} - C_{33} гомологов. Содержание алкилбензолов, присутствующих среди углеводородов в малой концентрации (0,7 отн. %), в результате закачки в скважину композиции не изменилось.

Таким образом, использование нефтевытесняющих композиций для извлечения высокосмолистых малопарафинистых нефтей привело к снижению содержания в нефти смол и, как следствие, плотности нефти. Эти изменения могут быть следствием смещения равновесия распределения отдельных нефтяных компонентов: смол (в частности карбоновых кислот), низкомолекулярных н-алканов и ароматических углеводородов в системе нефть — водная фаза в сторону последней за счет введения в скважину композиции с поверхностноактивными веществами, повышающими растворяющую способность водной фазы.

С увеличением времени после закачки концентрация композиции и, как следствие, растворяющая способность водной фазы снижаются, состав нефти постепенно возвращается к исходному.

Рисунок. Изменение состава углеводородов в результате воздействия горячего пара и нефтевытесняющей композиции на нефть (скв. № 1073)

Выводы

- 1. Установлено, что нефти, добытые из пластов, обработанных нефтевытесняющими композициями, в сравнении с нефтями, добытыми без обработки, содержат повышенное количество углеводородов (легкокипящих и масел), пониженное асфальто-смолистых веществ.
- 2. В результате комплексного воздействия на пласт нефтевытесняющей композиции и пара произошло уменьшение плотности нефти с 952,8 до

СПИСОК ЛИТЕРАТУРЫ

- 1. Газизов А.А. Увеличение нефтеотдачи неоднородных пластов на поздней стадии разработки. М.: ООО «Недра-Бизнесцентр», $2002.-639~\mathrm{c}.$
- Алтунина Л.К., Кувшинов В.А. Физико-химические аспекты технологий увеличения нефтеотдачи (обзор) // Химия в интересах устойчивого развития. 2001. № 9. С. 331–344.
- Алтунина Л.К., Кувшинов В.А. Физико-химические методы увеличения нефтеотдачи пластов нефтяных месторождений // Успехи химии. – 2007. – Т. 76. – № 10. – С. 1034–1052.
- 4. Савиных Ю.В., Стахина Л.Д., Прозорова И.В., Бессараб Н.А. Выделение нефтяных кислот сочетанием градиентной хрома-

- 929,9 кг/м³, увеличилось суммарное содержание насыщенных и ароматических углеводородов, содержание смол снизилось на 6,5 мас. %.
- Полученные результаты исследования могут быть использованы для разработки критериев эффективности и времени работы нефтевытесняющих композиций с целью повышения нефтеотдачи пласта, а также определения и предсказания товарных характеристик добываемых нефтей.
 - тографии и химической модификации // Нефтехимия. 1997. T. 37. N = 4. C. 360 366.
- Современные методы исследования нефтей (справочно-методическое пособие) / под ред. А.И. Богомолова, М.Б. Темянко, Л.И. Хотынцевой. – Л.: Недра, 1984. – 431 с.
- Поконова Ю.В. Нефть и нефтепродукты. СПб.: Профессионал, 2003. 850 с.

Поступила 22.06.2010 г.