ЛИТЕРАТУРА

- 1. Бабкин В.А., Бурюкин Ф.А., Киселёва А.С., Григорьев А.В., Косицына С.С. Увеличение энергоэффективности в процессе атмосферной перегонки нефти // Известие Томского Политехнического Университета, 2014, №3, Том 325. С. 56-63.
- 2. Александров И.А., Ефремов Г.И., Брюзгинов Е.В. Применение теплового насоса в процессах ректификации // Энергосбережение и водоподготовка, 2007, №1. С. 33-36
- 3. Плотникова Л.В., Андреева С.А., Ефремов Г.И. Организация энергосберегающей системы утилизации вторичных ресурсов стадии пиролиза в производстве этилена // Энергосбережение и водоподготовка, 2009, №2. С. 9-12.
- 4. Михайлова (Плотникова) Л.В. Анализ термодинамической эффективности теплотехнологической схемы пиролиза в совместном производстве этилена и пропилена // Известия Российской академии наук. Энергетика, 2005, № 1. С. 69-79.
- 5. Красавина Е.О., Фаздалова А.И., Плотникова Л.В. Использование термодинамического анализа при построении оптимальной структуры установки «ректификационная колонна тепловой насос» // Сборник статей Международной научно-практической конференции «Технологии XXI века: проблемы и перспективы развития», 2016. С. 97-99.

РАЗВИТИЕ ВЕТРОЭНЕРГЕТИКИ В КЕМЕРОВСКОЙ ОБЛАСТИ

Курманбай А.К., Нозирзода Ш.С. Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета, г Юрга

Одним из самых доступных вариантов использования возобновляемых источников энергии – является использование энергии ветра. Ветер - это движение воздуха относительно земной поверхности. Различия в степени нагревания воздуха способствуют возникновению перепадов давления в воздушных массах и приводят их в движение - воздух перемещается из областей высокого давления в область низкого давления. Чем больше разница температур между воздушными массами, тем сильнее ветер. Скорость ветра измеряется в метрах в секунду, километрах в час или баллах (1 балл равен 2 м/с). Средняя многолетняя скорость ветра у земной поверхности - 4 - 9м/с, а максимальная средняя годовая скорость ветра на побережье Антарктиды достигает 22 м/с. Ветер скоростью 5 - 8 м/с считается умеренным, выше 14 м/с - сильным, выше 20 - 25 м/с - штормом, выше 30 - 35 м/с - ураганом. То, что энергия ветра очень велика, даёт основания для поиска её практического применения.

В Кемеровской области как и во всем мире переходят к использованию различных источников энергии, не только с точки зрения экономики, но и с экологической стороны. Ведь использование энергии ветра, солнца считается экологически безопасным для природы, но и от них есть небольшой ущерб. От больших ветровых электростанции исходит большое количество шума, которые могут препятствовать передаче радио и электроволн.

Запасы энергии ветра по оценкам Всемирной метеорологической организации, составляют 170 трлн кВт-ч в год. Эту энергию можно получать, не загрязняя окружающую среду. Ветра в Кемеровской области достаточно много для развития в области ветровой энергетики (Таблица 1).

Таблица 1. Ветра Кемеровской области.

Расположение	Среднегодовая	Средняя скорость ветра				Максимальная
метеостанции	скорость ветра	(M/c)				скорость ветра
	(на высоте 10м)	Зима	Весна	Лето	Осень	(M/c)
Кемерово	1,9	1,5	2,3	1,8	2,0	21
Белово	2,2	1,9	2,6	2,1	2,2	27
Берёзовский	2,1	2,3	2,4	1,7	2,1	24
Киселёвск	2,3	2,1	2,7	2,1	2,3	28
Кондома	0,8	0,4	1,1	0,7	0,8	25
(Таштагольский						
район)						
Крапивинский	1,7	1,4	2,0	1,5	1,8	24
Красное	2,1	2,0	2,5	1,7	2,0	25
(Ленинск-						
Кузнецкий р-н)						
Кузедеево	2,1	1,8	2,6	1,8	2,1	26
(Новокузнецкий						
район)						
Мариинск	2,4	2,3	2,8	1,8	2,4	27
Междуреченск	1,0	0,7	1,4	0,9	1,0	24
Новокузнецк	3,1	2,9	3,6	2,6	3,2	33
Промышленная	1,9	1,7	2,2	1,6	2,0	24
Тайга	2,8	2,8	3,2	2,2	3,1	26
Таштагол	1,0	0,6	1,4	1,0	0,9	22
Тисуль	2,4	2,4	3,0	1,6	2,7	29
Топки	2,2	2,2	2,6	1,8	2,3	26
Тяжинский	2,5	2,2	2,8	2,1	2,7	25

Из таблицы видно, что в Кемеровской области достаточно ветрено, это является хорошей почвой для развития ветреной энергетики в области.

Но у ветра есть два существенных недостатка: его энергия сильно рассеяна в пространстве, и он непредсказуем - часто меняет направление, вдруг затихает, а иногда достигает такой колоссальной силы.

Применение возобновляемый источников энергии является на сегодняшний момент актуальной темой. Главным направление исследований и научных разработок должна стать проблема аккумулирования нестабильных потоков энергии.

В Кузбассе возможно развитие различных видов возобновляемых ресурсов: солнечная энергия, шахтовый метан, ветроэнергетика, использование биогаза

Развитие ветреной энергетики в Кемерово и Кемеровской области обусловлено экономическим и географическим положением.

К выводу о том, что внедрение на территории Кузбасса технологий выработки электроэнергии с помощью таких возобновляемых ресурсов, как сила ветра или солнечное излучение, пока невозможно, пришло руководство департамента электроэнергетики Кемеровской области и кузбасские учёные.

Пока правительство находится в стадии обсуждения процедуры выделения средств на возведение объектов альтернативной энергетики. Эксперты полагают, что предпочтение получит схема долгосрочного (15-20 лет) льготного кредитования под 3-4% годовых. Впрочем, возможен и иной вариант — прямое выделение целевых безвозмездных траншей.

ЛИТЕРАТУРА

- 1. Альтернативная энергия [Электронный ресурс] // http://alternativenergy.ru//.
- 2. Миллер Р.-Ф. К вопросу о возможной активизации применения на практике малой ветроэнергетики. Сборник материалов Международной научно-практической конференции (г. Киев, Украина, 8 апреля 2014 г.).-Центр Научно-Практических Студий, 2014, 92 с.
- 3. Научная библиотека Кибер Ленника [Электронный pecypc].//http://cyberleninka.ru/article/n/sposob-povysheniya-effektivnosti-raboty-vetrodvigatelya#ixzz41IHe3jOG//.
- 4. Пургин С. А. Нелегкий путь ветроэнергетики / С. А. Пургин. Инвестиции ПФО, 2006.

ОБОБЩЕННЫЙ ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ЭФФЕКТИВНОСТИ ПАРОГЕНЕРАТОРА ЭНЕРГОБЛОКА АЭС С ВВЭР-1000

Лисова Я.В.

Ивановский государственный энергетический университет им. В.И. Ленина, г. Иваново

Введение. Современные АСУТП имеют высокий информационный потенциал. Задача получения необходимой информации о координатах технологических объектов управления (ТОУ) решается, как правило, из опыта или на основе экспериментальных исследований. Идентификация ТОУ связана с определенными рисками при проведении экспериментальных исследований и с ограниченными возможностями непосредственного контроля технологических параметров [1-3].

Парогенерирующая установка атомной электростанции наряду с ядерным реактором и паровой турбиной относится к основному оборудованию двухконтурных АЭС и представляет собой сложный объект управления, в котором в итоге ряда последовательных преобразований ядерная энергия топлива превращается в тепловую энергию насыщенного пара, направляемого в турбину. Система питания парогенератора является одним из важнейших элементов энергоблока АЭС с ВВЭР, от надежной и эффективной работы которого зависят показатели работы всего энергоблока [5, c.74].

Обобщенный термодинамический анализ позволяет дать строгое решение задачи определения управляемых координат сложного объекта управления. Это дает возможность найти новые сигналы, не используемые в типовых АСР, и соответственно получить новые технические решения, которые могут повысить точность и качество регулирования.

Таким образом, задача теоретического обоснования управляемых координат рассматриваемого объекта для совершенствования АСР питания парогенератора АЭС является актуальной как в научном, так и в практическом аспектах.

Методика. Перед проведением анализа устанавливается свойство системы (закрытая или поточная). Для поточных объектов разрабатывается его обобщенная потоковая схема (см. рис 1.), где должно быть отображено взаимодействие термодинамической системы с окружающей средой на уровне принимаемых допущений [1, стр.89].

Анализ технологических особенностей принципиальной схемы парогенератора (рис.2.), РІ-диаграммы, а также тепловой схемы энергоблока АЭС с реактором ВВЭР-1000 позволяет представить схему движения потоков (рис.1.) [1].