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Abstract. A predictive modeling technique of optimal cutting modes in machining of workpieces 

made of titanium alloys, different from the well-known ones, is offered. The influence of various 

factors on the process of cutting for the purpose of defining optimal parameters of machining in 

accordance with certain effectiveness criteria is examined in the present paper. Mathematical 

models of optimization, algorithms and computer programmes, visual graphical forms presenting 

dependences of effectiveness criteria on the master schedule parameters have been worked out. 

Verification of mathematical models in laboratory and working conditions has been carried out. 

 

1.  Introduction 

Modern machinery production is impossible without data support. Cutting parameters should be optimized 

for the purpose of increasing effectiveness as well as competitiveness.  

One of the ways of increasing effectiveness of manufacturing is the application of optimal cutting modes 

obtained by simulation modeling. The relevance of these cutting modes should be confirmed by a physical 

experiment. The investigation of cutting process requires considering a great number of factors, taking into 

account the impact of cutting modes and geometry of a cutting tool on productivity and net cost of 

machining. From the position of optimization and manufacture intensification, simulation modeling is more 

multipurpose and less labour-consuming in comparison with the physical experiment.  

Titanium alloys refer to the material groups, which are widely used in engineering. Titanium alloys have 

a wide application in airspace and chemical industry, shipbuilding, etc. [1]. Titanium alloy ВТ9 (Ti-6Al-

3Mo) is applied in manufacturing of parts working at high temperatures (approximately 500 
0 
С), on heavy 

loading, in aggressive environment, etc. It possesses high specific strength and corrosion resistance, low 

plasticity and heat conductivity, propensity to sticking and strain or work-hardening that causes the 

increased labour intensity of its machining. Research conducted by many authors [2-6], has presented that 

cutting modes and geometry of cutting tools in machining of titanium alloys do not always correspond to 

optimum values. 

2.  Problem Statement 

The research objective is to define the cutting mode parameters and geometry of turning cutters optimizing 

basic indexes of the production process effectiveness: productivity, net cost, cutting tool life, roughness of 

the machined surface. Difficult -to-machining titanium alloy ВТ9 (Ti6Al3Mo) has been selected as a work 

material. The input data of other work materials can be included into a database for optimization if 

necessary. 
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The research method involves mathematical simulation, development of computer software, use of 

computational methods for solving the optimization task of machining of workpieces made of titanium alloy 

BT9 as well as the experimental test aiming to the identification of obtained results in working conditions. 

3.  Development of Mathematical Model 

Mathematical models and optimization algorithms reflecting the interrelation of cutting mode parameters 

with such quality criteria as productivity (P), net cost (C), cutting tool life (T) and roughness of the 

machined surface (Rz) have been developed. 

Dependences of criteria P, T, C, Rz on the parameters of cutting modes are accepted according to 

formulas (1) and (2) [4] and presented as follows: 
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Where: 

 r – nose radius at the top of a turning cutter, mm; v – cutting speed, m/s; t – cutting depth, mm; φ – 

cutting edge angle on the plan, degrees [º]. 
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Where:  

D – diameter of a workpiece, mm; n - speed of workpiece rotation (number of revolutions per minute), 

r/min; s – feed rate of a cutting tool, mm/rev; τсh - tool change rate, min; T – cutting tool life, min. 

 

yx

vv

stv

kC
T =   [min],     (3) 

Where: 

Cv - coefficient, depending on a group of work and cutting tool materials; kV – coefficient, depending 

on strength and chemical composition of work and cutting tool materials, geometry of a cutting tool, 

use of cutting lubricant; x, y – exponent quantities, depending on the grade of work and cutting tool 

materials and cutting conditions. 

The following function for P is obtained by putting (3) into (2) and taking the change of allowance value 

z at constant t for a disturbance effect. 
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The net cost of manufacturing of a workpiece (a reference area of machining of a workpiece equals 

0.1 m
2
) is defined using the following formula: 
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Where: 

tm – cutting (machine-tool) time for machining of a workpiece with a reference area equal to 0.1 m
2
 (min,); 

tch – tool change time over a period of its tool life (min); as - salary of a machine worker per minute, dollar 

($); am - operating costs of a machine tool (equipment) for a minute of its operation, dollar ($); e - operating 
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costs of a cutting tool during its tool life, dollar ($); Q – quantity of the machined workpieces during tool 

life value (pieces). Q = f (v, s, t, T). 

The mathematical models under consideration are presented as the set of multiparameter nonlinear 

functions. These functions are stored on a database and used for the formation of the optimization model as 

well as the presentation of functions in a required format. 

A ‘coordinate descent method’ for multidimensional functions is used to determine the optimum value 

of effectiveness criteria. Allowed values of initial parameters are considered as limitations. Optimization is 

performed due to variations of initial parameters in the given limited ranges. 

The optimal solution is represented in view of the adjusted values of parameters when the objective 

function takes extreme value Fmin (or Fmax) for a specific effectiveness criterion.  

Software for the problems to be solved has been developed in Delphi environment [5]. A formalized 

presentation of the initial and output information and a range of variation of cutting mode parameters are 

represented in Figure 1. 

The output data include the calculation data of criteria P, T, C, Rz, depicted in the form of dependences 

P=f(v), T=f(v), C=f(v), Rz=f(v). A graphic presentation of the output data is shown in Figure 2. 

 

 
 

Figure 1. Dynamic pattern of dependences P = f(v), T = f(v), C = f(v), Rz = f(v,) 

at s = 0.34 mm/rev, t = 1 mm 
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Figure 2. Influence of the cutting speed v on principle characteristics of the cutting process in turning 

of workpieces made of titanium alloy ВТ9 at feed rate s = 0.34 mm/rev, depth of cut t = 1 mm. 

 

Calculation data (results) are performed for feed rate s=0.34mm/rev. A unit of measurement P on the 

graph is presented in m
3
. Data for other values s within the given range of feed rate is calculated in a similar 

way according to the relevant technique. Corresponding to the graphs it is possible to define current values 

of criteria P, T, C, and Rz when the cutting speed v is changed in limits from 0.17 to 1.5 m/s. 

A ‘coordinate descent method’ is used to determine the optimum value of the effectiveness criterion P, 

T, C, Rz. A calculation of minimum net cost C = f (s, n, v, D, r, t) of machining of the workpiece made of 

titanium alloy BT9 is demonstrated in Figure 3. 
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4.  Research results 

Mathematical models, numerical methods and graphical interface offer the possibility to determine optimal 

cutting modes in accordance with the specified effectiveness criteria on the basis of initial parameters and 

the variation of their values in the given range. 

Research is conducted and graphical dependences on cutting speed v and feed rates are plotted for the 

following criteria: effectiveness, productivity, cutting tool life, net cost, and roughness of the machined 

surface. It is possible to define optimization parameters for various cutting modes using graphical 

characteristics. Thus, in machining of the workpiece made of titanium alloy ВТ9 at depth of cut t=1 mm the 

minimum net cost С = $ 0.585 will be obtained under the following parameters: productivity                     

P  =  17. 1·10
-4

 m
3
 /min, cutting tool life T = 15.6 min, cutting speed v = 0.5 m/s, feed rate s = 0.34 mm/rev, 

depth of cut t = 1 mm. 

Experimental research was carried out in laboratory and plant conditions on the lathe machine (model 

16К20). Cutting speed v was being changed in a range of 0.17…1.17 m/s, feed rate s was being varied in a 

range of 0.14…0.4 mm/rev. 

Straight-turning tools with indexable inserts made of cemented carbide BK8 (WC-8Co) were used as a 

cutting tool. The conducted experimental research showed the correlation of the theoretical (Figure 1…3) 

and practical results (Table 1). The criterion of tool deterioration of wear-land hf was 0.3 mm. 

 

Table 1. Experimental data 

№ 

exp. 

Cutting speed  

V,  

[m/s] 

Cutting tool 

life T [min] 

Productivity 

P×10
-4

,   

[m
2
/min] 

when t=1 mm 

Quantity of 

machined 

parts, 

[pieces] 

Machining 

time, tm 

[min] 

Net cost, 

$ [dollar]  

1 0.19 40 39.5 2.44 19.75 1.18 

2 0.46 18.8 94.5 2.6 9.62 0.6 

3 0.66 6.8 134 1.07 7.7 0.628 

4 0.9 1.6 183.5 0.284 6.48 1.245 

5 1.11 0.8 220 0.139 5.35 2.33 

 
 

Figure 3. Optimization of cutting mode parameters for net cost C = f (s, n, v, D, r, t). 
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5.  Conclusion 

The calculation of cutting mode parameters has been carried out by means of mathematical simulation with 

the subsequent verification in the form of experiment under plant conditions for the purpose of decreasing 

labour input and reducing high cost of actual test. 

The graphical interface of computational modeling for optimization of cutting process parameters for 

turning of the hard-to-machine titanium alloy has been developed. It allows setting optimal cutting modes 

based on the range variation of initial parameters. 

Guidelines for the cutting process optimization taking into account the restrictions imposed on 

parameters of the cutting mode in conformity with the specified effectiveness criteria have been worked out 

on the basis of the present research. 
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