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Abstract. A thermodynamic analysis of phase transformations taking place during doping of 

steel with tungsten and titanium has been performed. The studies on the surface layer of steel 

modified using the combined method (electrospark doping and the subsequent electron-beam 

treatment) have been carried out. Formation in the surface layer of a multi-phase 

submicrocrystalline structure with high strength properties has been revealed. 

1. Introduction 

The method of electrospark doping (ESD), based on the phenomenon of electrical erosion and polar 

transfer of the anode material to a cathode (a work piece) during a pulsed electric discharge between 

them in a gaseous medium, differs from other surface treatment methods in its simplicity, reliability, 

and cost-effectiveness [1]. Depending on the anode material, an extended surface layer with high 

strength, tribological, and other properties is formed on the work piece. The disadvantages of ESD are 

as follows: high surface roughness of the treated surface of the work piece, the presence of cracks, 

discontinuities, and micropores. To reduce the roughness introduced by electrospark doping, the 

methods based on the mechanical impact on the modified surface are used (surface-plastic strain, 

running the ball, nonabrasive ultrasonic treatment, etc.) [2, 3], as well as treatment with concentrated 

energy flows (plasma flow, electron and ion beams, laser beams) [4, 5].  

The paper is devoted to the analysis of the structure and properties of the surface layer of carbon 

steel subjected to electrospark doping and subsequent treatment with a high-intensity pulsed electron 

beam. 

2. Material and methods of study 

The material of the study was carbon steel 65G. Samples with dimensions of 25х25х50 mm were 

hardened at the temperature from 820 °С in oil and tempered at 350 °С. The electrospark treatment 
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was carried out in air using installation ‘Elitron 22A’ at the discharge current of 2 A and the voltage 

on the doping electrode of 33 V. Technically pure tungsten was used as an electrode. The electron-

beam treatment was performed on the basis of installation ‘SOLO’ [5]. The studies on the structure of 

the modified layer were carried out using methods of optical (NEOFOT-32) and scanning electron 

(SEM-515 Philips) microscopy, the X-ray diffraction analysis (diffractometer XRD 6000). The 

microhardness (PMT-3, the load on the indenter is 0.1 N) and the durability (Tribometer CSEM, 

Switzerland) were also measured. 

3. Research results and their discussion 

Doping of steel with tungsten allows a significantly improvement of its durability. This is due to the 

fact that doping of wolfram (W) increases the volume share of tungsten carbides during quenching at 

normal temperature. It is important to note that an increase in the volume fraction of tungsten carbides 

leads to formation of a finer grain and, therefore, to the improvement of mechanical properties, in 

particular higher viscosity. 

In system Fe-W-C, the atoms of Fe and W belong to transition metals of VIA group, and carbon is 

a nonmetal [9]. In system W-C, the formation of three compounds has been established: W2C() 

(prototype Fe2N, space group (sp. gr.) P63/mmc), WC1X (prototype NaCl, sp. gr. Fm 3 m) and 

WC() (prototype WC, sp. gr. P6m2) (Figure 1). 

 

 

Figure 1. Binary diagrams of systems Fe-W, Fe-C, WC [7] and the isothermal section of ternary 

system Fe-W-C at 1000 C [8]. 

In system Fe-C the following has been revealed: the formation of stable compound Fe3C (prototype 

Fe3C, sp. gr. Рпmа) and solid solutions (α-Fe) and (-Fe), and, at increased pressures, the stabilization 

of compound Fe7С3 (prototype Cr7C3 , sp. gr. Pnma,) take place. Carbon is a nonmetal and belongs to 

group IVB of the periodic table. Carbon atoms have four electrons on outer shells s- and р- (2s
2
2р

2
). 

As compared to the main alloy-forming metals, carbon atoms are much smaller and when alloyed with 
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metals they form interstitial phases (RС = 0.0916 nm, R = (RW − RC)/RW = 0.38 and 

R = (RW − RC)/RFe = 0.28). Since treatment of the material with an electron beam may lead to 

formation of new metastable compounds, we shall briefly mention metastable iron-based carbides. 

Thus, in [7, 9] it has been found that higher carbides Fe7C3 and Fe2C stabilize at increased pressures. 

Carbide Fe7C3  has hexagonal structure D101 (prototype Сr7С3, sp.gr. Pnma). Compound Fe2C is 

metastable with a hexagonal structure (-carbide, sp. gr. P6322) and is released during tempering of 

steel [10]. Moreover, [9] represents the data on the release of metastable carbides ηFe2C (sp. gr. Pnnm) 

and χFe5C2 (prototype B2Pd5, sp. gr. C2/c), which are found during tempering of steel. 

In system Fe-W the following has been discovered: three intermediate phases (Fe2W) (Р63/ттс, 

prototype MgZn2) ), (Fe7W6) (prototype Fe7W6, sp. gr. R 3 m), (FeW) (prototype MoNi, sp. gr. 

Р212121), and solid solutions (W), (α-Fe) and (-Fe). In this system, alloy-forming elements have size 

factor R = 0.139 (RW = 0.148 nm, RFe = 0.1274 nm), which is significantly less than 0.2; however, 

during alloying metals Fe and W form solid solutions with a very limited solubility. The solubility in 

W (α-Fe) with a decrease in the temperature reduces from 14.3 % (at.) at 1548 °C up to 4.6 % (at.) at 

1190 °C [7]. The solubility of Fe in (W) < 2.6 % (atm.) is at a temperature of 1677 °C [7].  

In ternary system Fe-W-C a whole range of intermediate stable and metastable compounds with 

complex crystalline structures that exist in different temperature and concentration ranges has been 

discovered (Figure 1). 

 

Figure 2. Binary diagrams of systems Fe-Ti, Fe-C, Ti-C [7] and the isothermal section of ternary 

system Fe-Ti-C at 1000 C [12, 13]. 

Two intermediate phases, TiFe2 (structure C14, prototype MgZn2, space group Р63/ттс) and TiFe 

(structure B2, prototype CsCl, sp. gr. Рт 3 т), are formed in system Fe-Ti (Figure 2). In regard to 

initial components, there are solid solutions based on Fe and Ti. Solid solutions based on Fe and Ti 

exhibit transformations which are caused by polymorphic transitions in pure metals Fe and Ti [7]. 

In system Ti-C there is one compound of carbide TiC() (structure B1, prototype NaCl, sp. gr. 

Fm3m) with a wide range of homogeneity. Compound TiC() melts congruently at 3073 ± 25 °C. The 
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homogeneity range of phase TiC near the solidus phase occupies from 32 up to 50 % (at.) [7]. From a 

structural point of view, compound TiC() is a solid solution of non-metal atoms in octa-interstitial 

sites of the FCC-lattice of metal [11]. Consequently, in the literature carbide TiC () is often referred 

to as TiCх. 

Within the isothermal section of system Fe-Ti-C there are no ternary compounds formed based on 

binary compounds of corresponding binary systems. It is important to note that in system Fe-Ti-C 

there are no intermediate ternary compounds, as it occurs in ternary system Fe-W-C. 

Electrospark doping of steel, as mentioned above, is accompanied by formation of a highly-

defected surface layer containing microcraters and microcracks, as well as buildups of metal. Our case 

has also shown formation of a similar structure of the doping surface (Figure 3a and Figure 4a). 

 

Figure 3. The structure of the steel surface subjected to electrospark doping with tungsten (a) and the 

subsequent irradiation with a high-intensity pulsed electron beam (b). 

The subsequent irradiation of the electroexplosive doping surface with a high-intensity electron 

beam leads to melting of the surface layer with a thickness of up to 30 microns. The doping surface 

smooths microcraters and buildups of metal are not registered (Figure 3b and Figure 4b). In some 

cases, microcracks are detected on doping surfaces. High-rate crystallization of the molten layer is 

accompanied by formation of a submicrocrystalline structure, the characteristic image of which is 

shown in Figure 3b and Figure 4b. It should be noted that average sizes of crystallites formed in the 

surface layer of steel are as follows: doped with tungsten – ≈ 300 nm; doped with titanium alloy – 

≈ 900 nm (Figure 3 and Figure 4). 

 

Figure 4. The structure of the steel surface subjected to electrospark doping with titanium (a) and the 

subsequent irradiation with a high-intensity pulsed electron beam (b). 
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The elemental composition of the doped layer has been studied using the electron microprobe 

analysis method. The studies have shown that after electrospark doping with tungsten, the 

concentration of the alloying element in the steel surface layer was ≈ 7 al. %; after doping with 

titanium – (30…40) at. %. Additional irradiation of the modified layer with a high-intensity electron 

beam led to remelting of the surface layer. Consequently, the concentration of the doping element in 

the surface layer of steel decreased and in system Fe-W-C it amounted to (3…5) at. %; in system     

Fe-Ti-C it was equal to (10…18) at. % 

Mechanical and tribological tests of the modified steel have been carried out. It has been 

established that formation in the surface layer of a multiphase nano- and submicrocrystalline structure 

leads to a substantial increase in mechanical and tribological properties of steel. 

4. Conclusion 

A thermodynamic analysis of phase transformations taking place during doping of steel with tungsten 

and titanium has been performed. It has been shown that doping of steel with carbide-forming 

elements results in formation of solid solutions, inclusions of carbide phases, and metal compounds. 

The study of the surface layer of steel subjected to electrospark doping has been carried out. 

Formation of a high-relief modified layer containing microcraters and microcracks has been revealed. 

It has been shown that irradiation of the doped layer with a high-intensity electron beam leads to 

smoothing of the modification surface and to formation of a submicron and nanocrystalline structure. 

It has been established that formation in the surface layer of a multiphase submicrocrystalline structure 

leads to a substantial increase in mechanical and tribological properties of steel.  
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