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Abstract. The radiation at grazing incidence of relativistic positively charged particles on
the crystal surface in the presence of magnetic field is studied theoretically. The magnetic field
is supposed to be parallel to the surface. Dependent on the initial conditions the particle can
be captured in the channeling mode and perform periodic oscillations along the surface of the
crystal. The spectrum, angular distribution and polarization of radiation are calculated. The
emission spectrum of a single particle is discrete and it extends up to very large numbers of
harmonics. If the magnetic field is much weaker than the electric field of atoms, the frequency
range of radiation of the particle beam does not depend on magnetic field and is defined solely
by the energy of the particles and by the surface averaged potential, though the frequency of
the first harmonic is defined only by the magnetic field. In case of channeled positrons the
characteristic energy of the emitted photons is of order 10γ3/2 (eV), where γ is the particle
relativistic factor. The main part of radiation is bound to a narrow cone and is polarized largely
orthogonal to the surface of the crystal.

1. Introduction
New sources of X-ray and gamma radiation, consisting of the particle accelerators and precisely
oriented mono-crystals are created on the basis of the channeling phenomenon. There is interest
in developing a radiation source using the periodically deformed crystals. See, for example,
the recent papers [1, 2]. The channeled positrons are bound to the bent atomic crystal planes,
and emit monochromatic radiation of a frequency which depends on the particles energy and
the period of the crystal plate bending. Such a “crystalline undulator” was first proposed in
[3, 4], where the deformation of the crystal was proposed to be performed by an ultrasonic wave.
There are also a number of projects of multi-crystal undulators where the particle is deflected
successively in the opposite directions at passing through a series of mutually oriented ultrathin
crystals (see, for example, [5]). The radiation generated in the crystal undulators can be harder
than one can get in a magnetic undulator at the same energy of the positrons, since the period
of the deformed crystal may be much smaller than the period of undulator magnetic field.

A “magneto-crystalline undulator” which produces electromagnetic radiation by means of
charged particles moving near the flat surface of a crystal in a magnetic field parallel to the
surface was proposed in [6]. The positively charged particles at grazing incidence to the surface
of the crystal are reflected from the surface and returning back by the magnetic field, if the field
is orthogonal to the average velocity of the particles. The quantum energy levels of the particle
transverse motion at the surface channeling in a magnetic field, and the possible frequency of
radiation were also found in [7].

RREPS2015 IOP Publishing
Journal of Physics: Conference Series 732 (2016) 012024 doi:10.1088/1742-6596/732/1/012024

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Interaction of the particles with the crystal surface in the presence of a magnetic field can be
observed when the crystal is mounted on the beam path in the chamber of a circular accelerator.
The dynamics of the beam in an accelerator at its interaction with a radiator which is thin in
profile and extended along the beam, in case of grazing incidence geometry is not investigated
in accelerator physics. An effect of asymmetric generation of the X-ray radiation produced at
grazing interaction of 33 MeV electrons with 50 mm Si plate in a magnetic field have recently
been observed in experiments reported in [8].

Here we report our theoretical investigation on radiation at the surface channeling of fast
positrons. It is assumed that the crystal is placed in a uniform magnetic field parallel to the
crystal surface. The initial velocity of the particle is directed so that the Lorentz force exerted
by the magnetic field is directed to the surface of the crystal. The result of the action of
two competing forces – the force caused by the magnetic field and the repulsive force of the
crystallographic plane, is that the particle oscillates in the vicinity of the surface.

2. The particle dynamics
Let the axis Z be directed along the vector of the magnetic field, and the axis Y be orthogonal
to the surface of the crystal directed outward (figure 1). The axis X lies in the crystal surface so
that the vector v of the particle initial velocity is lying in the plane XY . The crystallographic
plane forming the surface of the crystal has the coordinates y = 0. In order to improve the

Figure 1. The coordinate system

possibility of analytical solution of the problem we simplify the potential of the electric field of
the crystallographic plane as follows:

U(y) = U0e
−y/a.

where U0 is the averaged potential of atomic plane, and a is the screening radius.
The electric E and magnetic H fields in the halfspace y > 0 can be written as

H = (0, 0, H), E = (0, E(y), 0), E(y) = −dU(y)

dy
=
U0

a
e−y/a,

where H is a constant. Relativistic equations of motion of a particle in this field have the form

dpx
dt

=
e

c
ẏH,

dpy
dt

= eE(y)− e

c
ẋH. (1)

Here px, py are projections of the particle momentum on the coordinate axes:

pi = γm0ẋi, xi = x, y, γ =
1√

1− β2
, β2 =

ẋ2 + ẏ2

c2
,
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m0 and e are the mass and the charge of the particle, c is the speed of light. We assume that ẏ
is much less then cγ−1. Integration of the equations (1) gives

ẋ = ωy + V1, (2)

mẏ2

2
= E0 −

eU0

a
e−y/a −mω

(
ωy2

2
+ V1y

)
. (3)

Here m = m0γ, ω = eH/mc, E0 and V1 = vx0 − ωy0 are constants of integration. The last
equation describes the one-dimensional motion of a particle in direction of the Y axis in the
field with effective potential energy

Uef =
eU0

a
e−y/a +mω

(
ωy2

2
+ V1y

)
.

The integral of motion E0 plays the role of “transverse” energy of the particle. It is convenient
to introduce the dimensionless quantities

V =
Uef
eU0

, χ =
y

a
, η =

aH

U0
=
amc2

ReU0
,

where R = c/ω is a parameter that determines the strength of the magnetic field. It is
approximately equal to the particle orbit radius in this field. The parameter η is the ratio
of the force acting on the particle by the magnetic field to the electrostatic repulsion force of
the crystallographic plane. The dimensionless potential V with this notations takes the form

V = e−χ + χηβ0 +
a

R
β0ηχ(χ− 2χ0), (4)

where χ0 = y(0)/a. Since we are only interested in periodic motion in the Y -direction, we can
take as a starting point, without loss of generality, the point where y has a maximum. Then
v0y = 0, v0x = v0 = cβ0, where v0 is the initial velocity of the particle. We put β0 = 1 where it is
not critical. The value of a/R is much smaller than unity. The value of η in normal conditions is
also small. For example, if a = 1 Å, H = 104 Oe, eU0 = 30 eV, we have η = 10−2. Consequently,
the terms containing a/R in the formula for the potential energy can be neglected. As a result,
the interaction potential takes the form

V = e−χ + χη. (5)

A plot of this function is shown in figure 2. The minimum of potential lies in the plane with
coordinate χ = χm and has a value of Vm:

χm = − ln η, Vm = η(1− ln η). (6)

In the considered case η � 1 we have: χm � 1 and Vm � 1. This means that the
coordinate ym of the potential minimum is located at a considerable distance from the atomic
plane (ym � a). This makes it possible to split the space above the surface of the crystal into
two areas: y < ym and y ≥ ym. We assume that potential in region y < ym is represented by
the potential of atomic plane, and in the area y ≥ ym by potential of the magnetic field. Such
combined potential has the form

V (χ) =

{
e−χ, χ ≤ χm,
ηχ, χ ≥ χm.

(7)
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Hence, we have to solve the equations of motion in two separate regions: χ ≤ χm and χ ≥ χm
and take the final coordinates in the first region as the initial coordinates for the second region.
The solution of equations (2) and (3) in the region χ ≥ χm has the form

x = v0t, y = y0 −
1

2
R(ωt)2. (8)

And in the region χ ≤ χm

x = v0t, y = 2a ln
coshα(t− t0)√

ε
, (9)

with

α = ω

√
y0R

2a2
, ε =

E0
eU0

(10)

and integration constant t0, defined by condition of the trajectory continuity in the plane y = ym:

t0 = t1 +
1

α
Arth

√
χ2
0 − χ2

1

χ0
, t1 =

√
2a(χ0 − χ1)

cω
, (11)

where t1 is the time moment when the particle crosses the plane y = ym. Actually, if we neglect
the short-range potential in region y > ym, the particle moves in magnetic field along an arc of
a circle. But in accepted approximation this arc is equivalent to osculating parabola (8). One
period of the trajectory of a particle moving under the law (8) and (9) is shown in figure 3.

0 10020 40 60 8010 30 50 70 90

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

1.1

Figure 2. Potential V (χ), plotted
according to equation (5) for η = 0.01.
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Figure 3. One period of trajectory of a charged
particle. H = 50 kOe, mc2 = 40 MeV, eU0 =
30 eV, a = 1 Å, ε = 0.5.

The trajectory period T = 2t0 in approximation η � 1 consists mainly of the time spent by
the particle in the magnetic field: T ≈ 2t1. This follows from equations (10) and (11) — as
α � ω, the particle spends much less time 2(t0 − t1) in the electric field of the surface atomic
layer than in the magnetic field. It is also seen in figure 3.

3. Radiation
Let us denote by ω0 = 2π/T the frequency of the particle oscillation in y direction. Since the
particle motion is periodic, we use the formulae obtained in the theory of undulator radiation
(see., e.g. [9, 10]). In particular, the spectral and angular distribution of the energy dE , emitted
in a solid angle dΩ, in the frequency range dω̃ is defined by expression

dE
dΩdω̃

=
e2γ6(1− βn)

cω2
0

sin2 πνN

sin2 πν
(ρσ + ρπ)|β̇(ν)|2, (12)
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where n is the unit vector in the direction of radiation, N is the number of complete periods
of the particle oscillations, β̇(ν) is the Fourier transform of acceleration, ρσ and ρπ are the
functions defining pattern of mutually orthogonal polarization components of radiation. Namely,
ρσ defines the angular distribution of radiation polarized parallel to the plane of the particle
trajectory. The frequency of the first harmonic is determined by period of the trajectory shifted
by the Doppler effect, and ν indicates the number of harmonic. We define the direction of
radiation n and the unit vectors of linear polarization nσ and nπ, in a spherical coordinate
system as shown in figure 4. Functions ρσ and ρπ in this case are of the form

ρσ =
8(1− ψ2 cos 2φ)2

(1 + ψ2)5
, ρπ =

8ψ4 sin2 2φ

(1 + ψ2)5
, (13)

where ψ = ϑγ. A detailed analysis of the polarization components ρσ and ρπ and its graphical
representation can be found in [9, 10]. Calculating the Fourier components of the particle
acceleration and substituting the result into expression (12), we obtain

dE
dΩdω̃

=
2e2γ4ω2(1 + ψ2)

cω2
0

∣∣∣∣ ξν

sinh ξν
− sinω0t1ν

ω0t1ν
eiπν

∣∣∣∣2 sin2 πνN

sin2 πν
(ρσ + ρπ), (14)

where ξ = π2a/y0. The first term containing the hyperbolic sine is responsible for radiation in
the electric field of the crystallographic plane. Since ξ � 1, this term is significantly different
from zero at high harmonic numbers ν ∼ ξ−1 � 1. The emission spectrum (14) consists of
narrow lines at the integer values of ν. The envelope of the spectrum is shown in figure 5.

Figure 4. Unit vectors in the spherical
coordinate system.
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Figure 5. The radiation spectrum of a single
particle. H = 10 kOe, mc2 = 40 MeV, eU0 =
30 eV, a = 1 Å, y0 = 500 Å.

The angular spectral density of radiation of a beam of charged particles can be obtained by
averaging of expression (14) over the transverse energy of the particles. Suppose that the beam
of particles is of uniform distribution and insides on the crystal parallel to its surface. We assume
that the particles perform very large number of oscillations, and proceed to the limit N → ∞.
The spectrum in this case becomes discrete and ν takes only integer values. The second term
in (14) vanishes, as Ω0t1n ≈ ω0t0n = πn, and the angular spectral density becomes

dE
dΩdω̃

=
2e2γ4L

√
y0(1 + ψ2)

π2cR3/2

ξ2ν2

sinh2 ξν
(ρσ + ρπ),
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where L = 2N
√

2y0R is the channeling length (the projection of the trajectory on the x axis).
Next we average this equation over the initial coordinate y0 of the particle. Using notation
x = ξν = νπ2a/y0 we obtain the spectral and angular distribution of the emitted energy of the
beam per particle

dE
dΩdω̃

=
2e2γ4L

√
2b(1 + ψ2)

π2cR3/2
(ρσ + ρπ)S(z), (15)

where b is the maximum possible value of the initial position, in which the particle is captured
into channeling. The value of b can be found from condition that the transverse energy of the
particle is less than the potential barrier V = 1. It follows then from equation (7) that b = a/η.
The emission spectrum is determined by the spectral function S(z)

S(z) = z3
kz∫
z

dx

x2 sinh2 x
, z =

πω̃
√
aRη(1 + ψ2)

23/2cγ2
, k =

√
b

ym
. (16)

The graph of the spectral function S(z) for k = 10 is shown in figure 6. The emission spectrum
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Figure 6. The spectral function S(z) for
k = 10.
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Figure 7. The normalized photonic spectrum
F (z) for k = 10.

extends from zero to a frequency ω̃cr corresponding to the values of z ∼ 1 or

ω̃cr ∼
cγ2√
aRη

=
c

a

√
eU0

m0c2
γ3/2. (17)

As one can see, this frequency does not depend on the magnetic field. This is due to the fact that
most of the energy of radiation is generated during reflection of the particle from the surface.
In this process the particle reverses its transverse velocity in a very short period of time in
comparison with the period of motion T . The duration of the braking process in the vicinity
of crystal plane is of order of α−1. Taking into account the Doppler effect, the characteristic
frequency of the radiation is γ2α. For example, for parameters eU0 = 30 eV, a = 1 Å, and
γ = 100 the photon energy is equal to h̄ω̃cr ≈ 15 keV. The photon energy increases with the
particle energy as γ3/2.
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If we devide expression (15) by h̄ω̃ where h̄ is the Planck’s constant, we get the number of
photons Nf per unit frequence per unit solid angle

dNf

dΩd(h̄ω̃)
=
e2γ2L

√
aymη(1 + ψ2)2

πh̄2c2R
(ρσ + ρπ)F (z), (18)

where F (z) = S(z)/z can refered to as a normalized photonic spectrum. The function F (z) is
plotted in figure 7.

4. Conclusion
Under assumption that the magnetic field is much weaker than the average electric field of atoms
in the surface layer, the main part of the particle trajectory lies exterior to the screening radius
of the surface layer, and represents an arc of a circle, on which the particle moves in the magnetic
field. The frequency of the first harmonic of radiation is determined by the length of the arc of
the circle. The main part of radiation is generated during the sharp braking of the particles in
the electric field of atoms forming the surface. The radiation frequency is inversely proportional
to time spent by the particle within the range of screening radius and is much greater than the
frequency of the first harmonic. The spectrum extends to the harmonic numbers of order y0/a,
where a is the screening radius, and y0 � a is the maximal distance between the particle and
the crystal surface.

The frequency of radiation at the first harmonic and the number of harmonics forming the
spectrum are dependent on the magnetic field. However, the spectral range in which radiation
is generated by a parallel beam of particles does not depend on the magnetic field, and is
determined only by the energy of the particles and the average potential of the surface layer of
atoms. Angular distribution and polarization of radiation are typical for radiation of an ultra-
relativistic particle moving along a flat trajectory and oscillating with a small amplitude: the
radiation is concentrated in a narrow cone in the direction of the average velocity and polarized
mainly in the plane of the trajectory.

Radiation effects caused by the surface channeling were also observed at grazing incidence of
the electrons on the surface of silicon crystal placed into a betatron chamber [8]. However, the
theory developed in this paper is not applicable in this case because interaction of negatively
charged particles with the surface is more complicated.
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