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Abstract. The descriprion of ultrarelativistic classical particles’ movement in interference
laser field formed by multichannel ”sandwich” structures taking into account the radiative energy
losses is present. The muon channeling case is described in detail. The critical angle for muon
bound motion in the potential well of laser field is defined. The feasibility of beam cooling for
charged particles due to radiation losses is shown.

1. Introduction
The investigation of charge particle dynamic in interference laser field presents great interest.
The first article dedicated to this studies was published in the first half of 20th century [1].
Since that many papers describing charge particles interaction with interference electromagnetic
field have been published. In particular, new applications of the effect of charge particle
interaction with interference electromagnetic field were suggested in [2, 3, 4, 5, 6, 7, 8].
Theoretical investigation of interaction of charge particle with a standing electromagnetic wave
were performed in [9, 10, 11]. A new point of view was suggested in the paper [12], in which for
describing such interaction mathematical formalism of theory of charge particle channeling in
crystals was used [13]. Using the mathematical apparatus of theory of charge particle channeling
in crystals the effective potential of channeling was derived that allowed investigation of charge
particle interaction in various geometries of interference laser field and some new features, such as
the inversion of potential, to be studied in detail. Till now all investigations were made without
taking into account the radiation losses of the particle, and only electrons were considered. The
charge particle dynamics including the radiation losses, and the probability of muon channeling
in laser field are covered in this paper.

2. Muon channeling in laser field
In [14] relativistic electron dynamics in the field of two interfering plane polarized laser waves
was considered. Nonzero components of total field formed by the lasers can be written in the
form
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Ex = 2E0 sinα cos (k cosαx) sin (ωt− kz sinα),
Ez = 2E0 cosα sin (k cosαx) cos (ωt− kz sinα),
Hy = 2E0 cos (k cosαx) sin (ωt− kz sinα),

(1)

where E0 is the magnitude of electric field of a single laser wave, π − 2α is the angle between
the wave vectors | k |= ω0/c of the lasers waves. The periodic channels can be formed for some
specific conditions, and, in generally, they are capable to trap any charged particle. The effective
potential describing interaction between the field and the charged particle of the mass m, the
charge e, the longitudinal Lorentz-factor γ‖ and the longitudinal velocity β‖, in respect to the
channel axis, which coincides with the Oz-axis, has the form

Ueff (x) = U0(β‖, α) cos (2kx cosα), (2)

where

U0(β‖, α) =
e2E2

0(− cos (2α)− 2β‖ sinα+ β2‖(1 + cos2 α))

2γ‖mω′2
, (3)

ω′ = ω0(1− β‖ sinα) (4)

As seen, the depth of a channel for muon less than for electron, with the same longitudinal
Lorentz-factor, because of the muon mass is more than the electron one. Because of it, the only
difference between muon and electron interactions with laser channels is quantitative and not
qualitative. For example, let consider the critical angle of channeling defined by the following
expression

θcr =
pmax⊥
p‖
≈

√√√√2U0(β‖, α)

γ‖mc2
(5)

For muon in the field of a standing wave formed by the micrometer laser it can be written in a
convenient form for the estimates

θcr[rad] ≈ 1, 15 · 10−10
√
I

γ‖

[
W

cm2

]
(6)

In the expression (6) the laser intensity is given in W/cm2, while the critical angle measured in
radians. In this way, for the muon with γ‖ = 103 and for the laser intensity I = 1016 ÷ 1020

W/cm2 the critical angle is θcr = 10 µrad ÷ 1 mrad. The ratio of muon and electron critical
angles is the same as their masses mµ/me ≈ 200. In [12] the estimation of the electrons critical
concentration, which can be held by channel field, gives

ne0 ≤
2γ‖I

mω2
0cd

2
ch

(7)

As one can conclude from expression (7) the difference in critical angles for muon and electron
is defined by the mass, and the range of the laser intensity above the range of the critical
concentration for muon is 1019 ≤ nµ0 ≤ 1023 cm−3. It should be underlined, the expression (7)
valid for non-disperse bunch. For a real bunch the critical concentration is typically less than
(7).
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3. Radiation losses
Let consider the motion of relativistic charge particle in external laser field. The equation of
motion including energy losses is written in the following [15]:

mc
dui

ds
=
e

c
F ikuk + gi, (8)

where F ik, uk, g
i, s are the electromagnetic field tensor, the 4-vector component of velocity, the 4-

vector component of stopping force and the proper length of trajectory, respectively. Hereinafter,
lower and upper indexes for 4-vectors correspond to covariance and contravariance components,
meanwhile for the space vectors the upper index defines a power, unless it is otherwise specified.
For the high energy particle the expression for stopping force can be rewritten in the next form
(for convenience we use the 4-vector of momentum instead of the velocity P i = mcui, and the
4-vector of momentum is upper-case)

gi =
2e4

3m5c8
P i
(
FklP

l
) (
F kmPm

)
, P i =

(
E

c
,p

)
, (9)

where E,p are the energy and the space momentum of particle, respectively. Let pass from the
proper length to the time, then (8) can be presented in the form

dP i

dt
=
e

c
F ik

Pk
P 0

+
mc2

P 0
gi (10)

Following the technique of our previous papers let present the particle motion as a sum of slow
smooth trajectory r̄ and 4-vector of momentum P̄ i, and fast oscillation trajectory rξ � r̄ and
momentum P iξ � P̄ i. Hereinafter the index ξ denominates the fast oscillation values. In this
way for the fast oscillation motion in first approximation we can write

dP iξ
dt

=
e

c
F ik

P̄k
P̄ 0

(11)

and for the smooth motion

dP̄ i

dt
=
eP̄k
cP̄ 0

(rξ,∇F ik) +
e

cP̄ 0
F ik

(
P ξk −

P̄k
P̄ 0

P 0
ξ

)
+
mc2

P̄ 0
ḡi +

mc2

P̄ 0
δgi, (12)

where

gi =
2e4

3m5c8
P̄ iFklP̄

lF kmP̄m, (13)

δgi =
2e4

3m5c8

(
P iξFklP̄

lF kmP̄m + P̄ i
(
P̄ lP̄mF

km(rξ,∇)Fkl + FklF
kmP̄mP

l
ξ+

+ FklP̄
lP̄m(rξ,∇)F km + FklF

kmP̄ lP ξm

))
+
P 0
ξ

P̄ 0
gi (14)

The gi is nonzero in Eq. (12) because of momentum squared, therefore after averaging this
doesn’t equal zero, in generally. In the equation for fast oscillation we neglected influence of
the energy losses as follows from the equations above derived. Till now we did not consider
the period of averaging, which depends on longitudinal velocity in respect to direction of laser
wave propagation [12, 14]. The period of fast oscillations is defined as T = 2π/ω′, where ω′ is
the frequency of fast oscillations (4). Neglecting the losses the longitudinal velocity does not
change. In reality that does not work. Nonetheless, we assume longitudinal velocity is constant
during the time of one small oscillation. Let consider relativistic particle moving with high
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speed along the channel axis (Oz-axis), and low velocity along the transverse axis (Ox-axis), i.e.
P 0 ∼ p‖ � px. Then the component of 4-vector can be rewritten as follows

P 0 = γmc = mc

√
1 +

p2

m2c2
≈ P̄ 0 + P 0

ξ , (15)

P 1 = p̄x + pξx, P 2 = 0, P 3 = p̄‖ + pξ‖, (16)

where

P̄ 0 = mc

√
1 +

p̄2‖
m2c2

= γ̄‖mc,

P 0
ξ =

p̄‖p
ξ
‖

(P̄ 0)2
=

p̄‖p
ξ
‖

mcγ̄‖

Taking into account these approximations losses, we can find the following expressions for the
components of space stopping force

fx = − 2e2

3m4c6

[
γ2‖m

2cpxω
′2
(

(eE0)
2

γ‖mω
2
0

+ 2Ueff

)
+

+

(
∂Ueff
∂x

− 2β‖pxmc
ω0

ω′
sinα− β‖
cos (2α)

∂Ueff,0
∂x

)
∂Ueff
∂x

]
, (17)

fz = − 2e2

3m4c6

[
γ2‖m

2cp‖ω
′2
(

(eE0)
2

γ‖mω
2
0

+ 2Ueff

)
−

−2γ‖mc(1 + β2‖)
ω0

ω′
sinα− β‖
cos (2α)

∂Ueff,0
∂x

∂Ueff
∂x

+

+β‖
(eE0)

4

2ω′2
cos2 α

(
1 +

2mω2
0Ueff,0

(eE0)2 cos (2α)

)(
3

(
ω′

ω0

)2

−

+

(
cos2 α

γ2‖
− 6β‖ sinα+ 3(sin2 α+ β2‖)

)
2mω2

0Ueff,0
(eE0)2 cos (2α)

)]
, (18)

where Ueff is the effective potential of relativistic particle (2), and Ueff,0 is the effective potential
of nonrelativistic particle (Ueff,0 = Ueff (β‖ → 0))

Ueff,0 = −e
2E2

0 cos (2α)

2mω2
0

cos (2kx cosα)

As seen from the expressions for the components of space stopping force (17) and (18), there is a
significant contribution in the losses from both small oscillations under the influence of laser wave
and channeling motion. The expression for stopping force includes both the effective potential
and the derivative of effective potential. The losses take place when there are no channels. This
happens due to the electron scattering in a laser field. The analysis of particle motion in the field
of arbitrary geometry becomes difficult. Because of it we consider the standing wave geometry
with α = 0. In this case the expression for the stopping force is very simplified. Let consider
the ultrarelativistic particle β‖ → 1 in the field of laser channels and assume p‖ ≈ γ‖mc, then
the equation of motion can be written in the following
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Figure 1. a) The transverse coordinate x of electron versus time t; b) the longitudinal electron
energy E‖ versus time t in the field of micrometer wavelength laser with intensity of 1019 W/cm2.

ẍ+
e6E4

0

3γzm5c7ω2
0

sin2 (2kx)ẋ+
1

γ‖m

∂Ueff
∂x

= 0, (19)

γ̇‖ = −
2e4E2

0γ
2
‖

3m3c5
(1 + cos (2kx)) (20)

In the expression (20) the therms with ratio of effective potential and longitudinal energy are
neglected at Ueff/E‖ → 0. The solutions of the equations (19), (20) are shown in the figure 1.
As seen, in such approximation there is no energy loss near the channel axis x = π/(2k), while
on the hill of potential the losses are maximal.

Hance, the maxima of the energy losses for electron (positron) and muon in the field of laser
channels are given by

dEe‖
dz

∣∣∣∣∣
max

≈ 2, 7 · 10−16Iγ2‖ ,

[
eV

cm

]
(21)

dEµ‖
dz

∣∣∣∣∣
max

≈ 7 · 10−21Iγ2‖ ,

[
eV

cm

]
(22)

In the expressions above the laser intensity is expressed in W/cm2. It worth mentioning that
the (21) and (22) define energy losses per unit length at peaks of the effective potential, while a
particle oscillating in the considered system moves from regions of high potential to regions of
minimum potential. Hence, 1 GeV electron in the field of 1020 W/cm2 intensity looses half of
its energy at 0,3 mm length, while at the same length in the 1022 W/cm2 intensity field 1 TeV
muon looses only ∼ 1 % of its energy.

Conclusions
The dynamics of classical charged particle in the field of laser channels including energy losses
is considered. It is shown that the critical angle for muon is less than for electron as expected.
The analytical expression for the stopping force influence on the charged particle in the channels
of two plane polarized laser waves is obtained. A particular case of charged particle dynamics
in a standing wave field is considered. The expression for the particle energy losses per length is
derived. According to the equation (21) the electron energy losses per length unit are immense,

RREPS2015 IOP Publishing
Journal of Physics: Conference Series 732 (2016) 012002 doi:10.1088/1742-6596/732/1/012002

5



while for muons (22) those are 5 orders less than for electron, but still essential. The use
of the channels formed by lasers may become an effective mechanism for cooling and shaping
ultrarelativistic charged particle beams.
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