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Abstract. The paper considers groundwater composition fluctuation within technogenic zones 

based on  evidence from the flooded coal mines of Primorye. The authors have determined the 

regularities of hydrogeochemical processes, specified the groundwater composition fluctuation 

within the technogenic complexes located in the liquidated mine areas, and identified the   

equilibrium phases between the studied waters and specific secondary minerals. It has been 

proved that water within natural-technogenic complexes in the liquidated mine areas are 

saturated with  silicates, carbonates, sulfates, oxides, and hydroxides, which should be taken 

into account when designing technologies for groundwater treatment.  

1. Introduction 

Today, coal mining is practically interrupted in Primorsky Krai, with 15 mines being flooded. This 

resulted in the change of the hydrogeological properties of Partizansky, Razdolnensky, and Uglovsky 

sedimentary basins. Moreover, this increased the permeability in the layers above coal seams, 

influenced groundwater natural regime and circulation, developed hydraulically bound technogenic 

aquifer systems, and caused the transformation of groundwater composition and formation of new 

water type, termed as “technogenic”. This term implies the diversity of exogenous and technogenic 

processes occurring within newly-formed natural-technogenic complexes. 

It is important to study the chemical composition and regularities of groundwater formation within 

natural-technogenic complexes located in the areas of liquidated coal mines. This will allow 

developing hydrochemical prognosis principles, as well as measures to mitigate environmental impact. 
 
2. Materials and methods  
The present paper deals with the chemical groundwater composition changes within technogenic 

zones, where the 200–800 m water-bearing strata were disturbed by mining works. We have examined   

the following liquidated mine areas in Primorsk Territory, RF (Figure 1): Partizansky (Glubokaya, 

Nagornaya, Avangard, Severnaya, and Uglekamenskaya mines),  Razdolnensky (Ilyichevskaya and № 

SPGE 2015 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 33 (2016) 012013 doi:10.1088/1755-1315/33/1/012013

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:zinkov_a@mail.ru
mailto:adasea@mail.ru


 

4 mines), and the Uglovsky (Artem) coal basins, as well as Podgorodnensky and Khasanovsky 

deposits (Podgorodnenskaya and Khasanovskaya  mines, respectively).  

The ground water samples were collected from wells screened of a particular aquifer or connected 

to filter-equipped mines in undermining sections. The samples were also collected from surface water 

seepage. To test cations and sulphate ions, hydrochemical water was sampled through cellulose filter 

(0.45 μm) in situ so as to remove suspended solid particles and then was acidified with nitric acid. For 

testing anions, the samples were also filtered and collected into polyethylene containers without 

acidification. Unstable parameters were determined at the sampling point as well. Mineralogical 

sampling was conducted single point method in sealed glass weighing bottles. 
 

The water samples were examined via standard analytical methods ICP-MS; ICP-OES, Furye-

spectrophotometer IR FTIR-84008. To study the composition of neocrystallizations, chemical, 

spectral, and roentgen-phase (diffractometer D8 Discover with CuKα; Dron-3 with FeKα) analyses 

were used, as well as IR spectroscopy method (IR Furye-spectrometer NICOLET, Termo). 

To store, integrate, and process geochemical data, we applied the mathematical methods of 

statistics and physicochemical modeling – equation solving (with thermodynamic equilibrium 

constants – program Aqua-Chem V. 5.1 [1]) and Gibbs free energy minimization method (program 

Selector-Windows [2–4]). 

 

3. Results and Discussion  
The analysis data showed that within Primorye liquidated coal mine areas, the groundwater in porous 

Quaternary and Neogene sediments, as well as in fractured aquifer systems of Cretaceous sediments 

and fracture-veined aquifer systems in zones of tectonic dislocations and intrusive contacts in 

Cretaceous sediments are fresh (mineralization 0.3–0.4 g/dm
3
), low hardness, pH-neutral, and 

bicarbonate. Cationic water varies from magnesium-sodium-calcium to calcium-magnesium. Chemical 

water composition variation within natural-technogenic complexes is attributable to mineralization 

 
Figure 1. Study areas: 1 – Partizansky coal basin; 2 –  Razdolnensky coal basin; 3 –  Shkotovsky 

deposit; 4 –  Podgorodnensky deposit; 5 – and the Khasanovsky deposit. 
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(from 0.3 to 8.0 g/dm
3
).  Sodium, magnesium, bicarbonate, and sulfate ion accumulations are involved 

in the increasing water mineralization. Within newly-formed  natural-technogenic complexes, the 

following brackish water types [5–7] exist: 1)sulphate bicarbonate, bicarbonate-sulphate, and sulphate 

magnesium; 2) sulphate bicarbonate, bicarbonate-sulphate, and sulphate sodium (Figure 2).  The ion-

exchange transformation is restricted to pH values from 5.8 to 9.4. Na
+
 or Mg

+2 
 accumulation in the 

above series is governed by the coal-overlaying formation rock. This fact is confirmed by the results 

of physicochemical “water-rock” system modeling based on minimization of isobar-isothermal 

potential (program complex “Selector-Windows”)  

 

Modeling methodology included the calculations of “water-rock” system equilibrium. Chemically-

natural water-bearing rocks were introduced in relevant proportions. Modeling involved the 

incongruent dissolution of rock minerals under the following conditions: 1) closed CO2 and 

atmospheric gases (СО2 – 0.01 kg/1 kg H2O, atmospheric gases – 0.3 kg/1 kg H2O) systems; 2) opened 

CO2 system (CO2 increased from 0.01 to 1.28 kg/1kg H2O).  

According to B. N. Ryzhenko and S. R. Krainova [8, 9], rock mass (R) and water mass (W) ratio in 

aluminosilicate rocks involves interaction time (conventionally, water exchange time) between rock 

and water solution. In this regard, the following R and W ratios were used in modeling the systems: 

0.001 (step 1); 0.002 (step 2); 0.004 (step 3); 0.008 (step 4); 0.010 (step 5); 0.016 (step 6) 0.032 (step 

7); 0.064 (step 8); 0.080 (step 9). Initially, step 1 of  computational experiment, partial pressure of 

carbon dioxide is 10
-2

bar, which corresponds to the mean groundwater within the regional fractured 

zone. Model adequacy to natural objects was estimated as the calculated correlation of chemical 

element composition in water and pH to the mineral composition of newly-formed solids of relevant 

natural parameters. 

Geochemical properties of groundwater within technogenic complexes located in the liquidated 

coal mine areas generate in the catchment area itself and transform towards the filtration flow 

accordingly: HCO3–Ca → HCO3–Na(Mg) → HCO3–SO4–Na(Mg) → SO4–Na(Mg) (table 1). 

Increased magnesium concentration in the groundwater is governed by significant mafic tuffogenic 

accumulations (40 %) in the stratigraphic sequence [7]. 

It has been revealed that closed CO2 system (РСО2 = 10
-2,0

) itself hinders НСО3
-
 + СО3

2 

concentration increase in the water phase and furthers increasing SO4
-2 

concentration (if possible). 

Sulphate ions in the groundwater of study basins is governed by the sulfides (pyrite) in overlaying coal 

 

Figure 2. Piper diagram of water samples from areas of liquidated coal mines in Primorye:  1 – water 

within natural-technogenic complex; 2 –water  within alluvial horizon; 3-water  in fractured  and 

fracture-veined complexes; 4 – water composition variation. 
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and coal thicknesses. This process is governed by the CO2 partial pressure and the presence of O2. 

Higher CO2 partial pressure equilibrium  (> 10
-1.0

) and lower О2 concentration equilibrium  result in the 

expansion of НСО3–Nа water areas within the coal basins. 

Chemical element concentration in water is governed by secondary minerals.  Physico-chemical 

calculations identified that components migrate in natural waters as uncomplexed ions. As the 

mineralization process continues, the number of complexed migrating components increases, which, in 

its turn, results in the formation of mineral phases. There exists a distinct alteration of  groundwater 

composition during their circulation in the natural-technogenic complexes and composition in the 

equilibrium secondary mineral phase (Table 1). 

Table 1. Modeling data within “rock-water” system, closed CO2 and atmospheric gases (СО2 – 0.01 

kg/1 kg H2O, atmospheric gases – 0.3 kg/1 kg H2O) systems. 

AquaChem program V. 5.1 showed that underground water with mineralization > 0.6 g/dm
3 

are 

saturated with calcium and magnesium carbonates, which corresponds to the findings by S. L. 

Shvartsev [10, 11] and other scientists [12, 13] concerning cation behavior in the groundwater within 

different landscape zones. If mineralization is >1.5 g/dm
3
, equilibrium with magnesium sulphate – 

epsomite (Razdolnensky coal basin) could be found.  As for surface water seepage in technogenic 

complexes, a steady equilibrium between above-discussed water types and sodium mineral series  

thermonatrite (Na2CO3∙H2O), tenardite (Na2SO4), etc. is established. All waters have been identified to 

be in equilibrium with kaolinite. Further water-rock interaction results in increasing silicon, 

Step 

number 

1 (1g  

rock / 1 

kg H2O) 

2 (2 g  

rock / 1  

kg  H2O) 

3 (4 g  

rock / 1 

kg H2O) 

4 (8 g 

rock / 1 

kg H2O) 

5 (10 g 

rock / 1 kg 

H2O) 

6 (16 g  

rock / 1 

kg H2O) 

7 (32 g  

rock / 1 

kg H2O) 

8 (64 g  

rock / 1 

kg H2O) 

9 (80 g  

rock / 1 

kg H2O) 

Water solution, mg/kg H2O 

TDS 273.63 488.07 749.71 1104.24 1292.85 1898.61 3605.25 6666.75 7945.08 

pH 6.69 7.03 7.21 7.33 7.38 7.48 7.56 7.63 7.61 

Eh. В 0.821 0.80 0.79 0.78 0.78 0.78 0.77 0.77 0.77 

Ca
+2

 2.40е+01 4.52е+01 4.96е+01 2.94е+01 2.39е+01 1.56е+01 1.08е+01 7.80е+00 8.35е+00 

Na
+
 9.47е+00 1.88е+01 3.70е+01 7.02е+01 8.35е+001 1.02е+02 5.18е+01 5.26е+00 1.75е+00 

Mg
+2

 6.06е+00 1.15е+01 2.20е+01 4.20е+01 5.14е+01 7.84е+01 1.49е+02 2.36е+02 2.53е+02 

НСО3
-
 1.03е+02 2.25е+02 3.45е+02 4.61е+02 5.18е+02 6.57е+02 8.18е+02 1.01е+03 9.99е+02 

SO4
2-

 2.36е+01 4.49е+01 8.88е+01 1.83е+02 2.30е+02 3.69е+02 7.29е+02 1.39е+03 1.70е+03 

Сl
-
 1.50е+01 1.50е+01 1.50е+01 1.50е+01 1.50е+01 1.50е+01 1.50е+01 1.49е+01 1.49е+01 

Si 6.42е+00 6.43е+00 6.43е+00 6.44е+00 6.44е+00 6.45е+00 6.44е+00 6.43е+00 6.41е+00 

Gas parameters 

РСО2 2.16е-02 2.16е-02 2.16е-02 2.17е-02 2.18е-02 2.20е-02 2.23е-02 2.34е-02 2.40е-02 

РО2 2.06е-01 2.05е-01 2.04е-01 2.03е-01 2.02е-01 1.99е-01 1.92е-01 1.77е-01 1.69е-01 

РN2 7.73е-01 7.73е-01 7.74е-01 7.76е-01 7.77е-01 7.79е-01 7.86е-01 8.00е-01 8.07е-01 

Mineral 

phase. 

% 

goethite 

– 3.35;  

montmor

illonite –

29.17; 

quartz –

67.48 

 

goethite –

3.32;  

montmori

llonite – 

28.98; 

quartz –

67.70 

 

goethite –

3.23;  

montmor

illonite – 

28.17; 

quartz –

66.14; 

calcite – 

2.46 

goethite 

– 3.15;  

montmor

illonite –

27.45; 

quartz –

64.60; 

calcite – 

4.71; 

rhodochr

osite – 

0.10 

goethite – 

3.13;  

montmori

llonite – 

27.32; 

quartz –

64.34; 

calcite –

5.05; 

rhodochro

site – 0.15 

goethite –

3.12;  

montmoril

lonite – 

27.18;  

quartz – 

64.05; 

calcite – 

5.44; 

rhodochro

site – 0.21 

goethite –

3.11; 

montmori

llonite – 

27.11; 

quartz –

63.92; 

calcite –

5.62; 

rhodochro

site – 0.24 

 

goethite –

3.10; 

montmori

llonite –

26.99; 

quartz – 

63.67; 

calcite – 

5.30; 

rhodochr

osite – 

0.24;  

dolomite 

– 0.69 

goethite –

3.09; 

montmoril

lonite –

26.92; 

quartz –

63.51; 

calcite – 

5.00; 

rhodochro

site – 

0.24; 

dolomite 

– 1.23 
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magnesium, calcium, sodium concentration in the solution and formation of montmorillonites and 

chlorites. When K
+  

ions that are closely connected with the weak acid anionites (HCO3
-
) accumulate, 

illite and sericite are formed.
 
If mineralization is > 4 g/dm

3
,
 
equilibrium with analcime, a typical 

mineral in alkaline sodium water,  could be found.  According to R.M. Garrelse and C. L. Kraist [14], 

this mineral could indicate the formation of amorphous silica. 

As there exists an equilibrium between the studied 

water and secondary minerals series on the earth 

surface, the intensive coagulation of newly-formed 

minerals and flaky fine-dispersed masses is 

observed (Figure 3). Phase (mineral) composition 

of fine-dispersed fraction was determined via IR 

Furye-spectrometry; and the following four mineral 

series were identified: carbonate, quartz, and 

montmorillonite; montmorillonite and quartz with 

insignificant iron hydroxide impurities; 

montmorillonite, quartz, and carbonate with 

significant iron hydroxide impurities; iron 

hydroxides.  

Thus, it has been established that the water 

within natural-technogenic complexes in the 

liquidated  mine areas are saturated with different 

silicates, carbonates, sulfates, oxides, and 

hydroxides.  This fact should be taken into account 

when designing groundwater treatment facilities 

and developing measures to mitigate the 

environmental impact caused by existing coal 

mines.  

It is noteworthy that the design and construction 

of the reagent-free water treatment facilities with  

filtration dikes are not always appropriate for mine 

water treatment, as there is an equilibrium between 

the studied waters and secondary mineral series on 

the earth surface,  intensive coagulation of newly 

formed minerals and flaky fine-dispersed masses. 

This, in its turn, causes intensive silting of the dike 

filters, water level increase in the storage pond, 

overflow, and destruction of the hydro-technical 

construction. 

 

4. Conclusion 
Based on the research results, it is possible to conclude that: 

 coal mine flooding in Primorsky Krai causes changes in ground water circulation and leads to 

formation of hydraulically bound technogenic aquifer systems;  

 geochemical properties of groundwater within technogenic complexes located in the liquidated 

coal mine areas generate in the catchment area itself and transform towards the filtration flow;  

 increased magnesium concentration in the groundwater is governed by significant mafic 

tuffogenic accumulations (40 %) in the stratigraphic sequence;  

 closed CO2 system (РСО2 = 10
-2,0

) itself hinders НСО3
-
 + СО3

2 
concentration increase in the 

water phase and furthers increasing SO4
-2 

concentration (if possible); higher CO2 partial pressure 

 
 

Figure 3. Reagent-free water treatment facilities 

with filtration dike (Uglekamenskaya mine): А – 

coagulation of clay minerals at the outlet of the 

distributive tray; В – mineral formation on the 

surface of the pond-storage; С – fine-dispersed 

mineral fraction. 
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equilibrium  (> 10
-1.0

) and lower О2 concentration equilibrium results in the expansion of НСО3–Nа 

water areas within the coal basins. 

 existing steady equilibrium between the studied waters and secondary mineral series  (silicates, 

carbonates, sulfates, oxides, and hydroxides) should be considered when designing measures to mitigate 

the environmental impact caused by the waters formed within the natural-technogenic complexes. 
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