лов. Разработана методика, позволяющая определять частоту, амплитуду и направление внешнего инерционного сигнала. Результаты исследования

СПИСОК ЛИТЕРАТУРЫ

- Demin V.A., Gershuni G.Z., Verkholantsev I.V. Mechanical Quasiequilibrium and Thermovibrational Convective Instability in an Inclined Fluid Layer // Int. J. Heat and Mass Transfer. – 1996. – V. 39. – № 19. – P. 1979–1991.
- Бабушкин И.А., Демин В.А. Вибрационная конвекция в ячейке Хеле-Шоу. Теория и эксперимент // Прикладная математика и механика. – 2006. – Т. 47. – № 2. – С. 40–48.
- Mialdun A., Ryzhkov I.I., Melnikov D.E., Shevtsova V. Experimental Evidence of Thermal Vibrational Convection in a Nonuniformly Heated Fluid in a Reduced Gravity Environment // Phys. Rev. Letters. – 2008. – V. 101. – 084501.
- Бабушкин И.А., Богатырев Г.П., Глухов А.Ф., Путин Г.Ф., Авдеев С.В., Бударин Н.М., Иванов А.И., Максимова М.М. Изучение тепловой конвекции и низкочастотных микроускорений на Орбитальном комплексе «Мир» с помощью датчика «Дакон» // Космические исследования. – 2001. – Т. 32. – № 2. – С. 150–158.
- MEMSIC // 2010. URL: http://www.memsic.com (дата обращения: 01.08.2010).

предложено использовать при проектировании прибора, способного регистрировать сильные инерционные воздействия.

- Бабушкин И.А., Глухов А.Ф., Демин В.А., Зильберман Е.А., Путин Г.Ф. Измерение инерционных микроускорений с помощью конвективных датчиков // Поверхность. – 2009. – № 2. – С. 72–77.
- Бабушкин И.А., Глухов А.Ф., Демин В.А., Дягилев Р.А., Маловичко Д.А. Сейсмоприемник на основе ячейки Хеле–Шоу // Прикладная физика. – 2008. – № 3. – С. 134–140.
- Бабушкин И.А., Демин В.А., Дягилев Р.А., Кондрашов А.Н., Маловичко Д.А. Сейсмологический датчик на основе ячейки Хеле–Шоу // Тез. докл. XVI Зимней школы по механике сплошных сред. – Пермь, 2009. – С. 38.
- Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. – М.: Наука, 1972. – 392 с.
- 10. Харкевич А.А. Борьба с помехами. М.: Наука, 1965. 276 с.
- Тарунин Е.Л. Вычислительный эксперимент в задачах свободной конвекции. – Иркутск: Изд-во Иркут. ун-та, 1990. – 228 с.

Поступила 01.08.2010 г.

УДК 536.21

АНАЛИЗ СВОБОДНОКОНВЕКТИВНЫХ РЕЖИМОВ ТЕПЛОПЕРЕНОСА В ТЕХНОЛОГИЧЕСКИХ СИСТЕМАХ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ

М.А. Шеремет, С.В. Сыродой

Томский политехнический университет E-mail: sheremet@tpu.ru

Проведено численное исследование режимов термогравитационной конвекции в замкнутом вертикальном цилиндре с теплопроводными стенками конечной толщины при наличии локального источника тепла в основании области в условиях конвективного теплообмена с окружающей средой. Математическая модель сформулирована в безразмерных переменных «функция тока – вектор завихренности скорости – температура» в цилиндрической системе координат. Проанализировано влияние числа Рэлея, фактора нестационарности, относительного коэффициента теплопроводности и толщины боковой поверхности цилиндра на режимы конвективного теплопереноса.

Ключевые слова:

Естественная конвекция, теплопроводность, цилиндрическая область, источник тепловыделения.

Key words:

Natural convection, conduction, cylinder, heat source.

Введение

Естественная конвекция, вызванная наличием градиента температуры в поле действия массовых сил, во многих технологических системах является определяющим механизмом переноса тепла [1–3]. Степень воздействия естественно-конвективного теплопереноса на режимы течения и транспорта энергии повышается при наличии теплопроводных стенок конечной толщины [4, 5]. Учет последнего фактора имеет существенное значение при создании современной электронной компонентной базы, в условиях оптимизации технологического процесса выращивания объемных монокристаллов, при проектировании эффективных систем охлаждения на тепловых и атомных электростанциях [6–8]. Наиболее полный анализ режимов конвективного теплопереноса в таких технологических системах требует применения подходов математического моделирования на основе уравнений математической физики, описывающих исследуемые механизмы переноса в областях различной формы.

Целью настоящей работы является обобщение двухполевого метода решения плоских сопряженных задач конвективного теплопереноса в декартовых координатах [9, 10] на класс задач в цилиндрической системе координат и проведение численного анализа режимов нестационарной сопряженной термогравитационной конвекции в типичном элементе технологической системы цилиндрической формы при наличии источника тепла в условиях конвективного теплообмена с внешней средой. Настоящее исследование представляет собой расширение сферы анализа (увеличение диапазона возможных геометрических объектов исследования) сопряженных задач естественной конвекции в замкнутых областях.

Постановка задачи

Рассматривается краевая сопряженная задача нестационарного теплопереноса в замкнутом вертикальном цилиндре (рис. 1).

Рис. 1. Область решения задачи: а) трехмерный объект исследования, б) сечение объекта θ=const (1 – стенки; 2 – газ; 3 – источник тепловыделения)

Область решения представляет собой замкнутый цилиндр с теплопроводными стенками конечной толщины, заполненный вязкой, несжимаемой, теплопроводной, ньютоновской жидкостью. В основании газовой полости (2 на рис. 1) находится источник тепловыделения постоянной температуры. Предполагается, что внешние поверхности горизонтальных стенок являются адиабатическими, а на внешних границах вертикальных стенок реализуются условия конвективного теплообмена с окружающей средой. Рассматриваемая геометрия задачи и граничные условия позволяют исключить влияние угла θ и проанализировать процесс переноса массы, импульса и энергии в сечении θ =const (рис. 1, б). При проведении вычислительных экспериментов предполагалось, что теплофизические свойства материала стенок и газа не зависят от температуры, а режим течения является ламинарным. Газ считался вязкой, теплопроводной, ньютоновской жидкостью, удовлетворяющей приближению Буссинеска.

Процесс переноса массы, импульса и энергии в газовой полости в цилиндрических координатах в предположении $V_{\theta}=0$ и $\partial/\partial \theta=0$ описывается следующими уравнениями [11]:

$$\frac{\partial(rV_r)}{\partial r} + \frac{\partial(rV_z)}{\partial z} = 0, \qquad (1)$$

$$\frac{\partial V_r}{\partial t} + V_r \frac{\partial V_r}{\partial r} + V_z \frac{\partial V_r}{\partial z} = -\frac{1}{\rho_2} \frac{\partial p}{\partial r} + v \left(\nabla^2 V_r - \frac{V_r}{r^2} \right), \quad (2)$$

$$\frac{1}{\partial t} + V_r \frac{z}{\partial r} + V_z \frac{z}{\partial z} =$$
$$= -\frac{1}{\rho_0} \frac{\partial p}{\partial z} + v \nabla^2 V_z + g \beta (T - T_0), \qquad (3)$$

$$\frac{\partial T}{\partial t} + V_r \frac{\partial T}{\partial r} + V_z \frac{\partial T}{\partial z} = a_2 \nabla^2 T, \qquad (4)$$

а также нестационарным двумерным уравнением теплопроводности для элементов ограждающей стенки [12]:

$$\frac{\partial T}{\partial t} = a_1 \nabla^2 T, \qquad (5)$$

где r, z – координаты цилиндрической системы координат; t – время; V_r и V_z – составляющие скорости в проекции на оси r, z соответственно; p – давление; ρ_2 – плотность газа; v – кинематический коэффициент вязкости; T – температура; T_0 – начальная температура в области решения; g – ускорение свободного падения; β – термический коэффициент объемного расширения; a_1 и a_2 – коэффициенты температуропроводности материала твер-

дых стенок и газа; $\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}$ – опера-

тор Лапласа.

Для исключения поля давления с целью сокращения времени вычислений вводятся переменные функция тока ψ и вектор завихренности скорости ω по следующим соотношениям:

$$V_r = \frac{1}{r} \frac{\partial \psi}{\partial z}, \quad V_z = -\frac{1}{r} \frac{\partial \psi}{\partial r}, \quad \omega = \frac{\partial V_z}{\partial r} - \frac{\partial V_r}{\partial z},$$

Сформулируем математическую модель в безразмерных переменных «функция тока – вектор завихренности скорости – температура». В качестве масштабов расстояния, скорости, времени, температуры, функции тока и завихренности были выбраны $L_{r,v} \sqrt{g\beta\Delta TL_r}, \sqrt{L_n/(g\beta\Delta T)}, \Delta T = T_{hs} - T_0, \sqrt{g\beta\Delta T L_r^5}, \sqrt{g\beta\Delta T/L_r}$. Безразмерные переменные имели вид:

$$\begin{split} R &= r/L_r, \ Z = z/L_r, \\ U &= V_r / \sqrt{g\beta\Delta TL_r}, \ V = V_z / \sqrt{g\beta\Delta TL_r}, \\ \tau &= t\sqrt{g\beta\Delta T/L_r}, \ \Theta = (T - T_0) / \Delta T, \\ \Psi &= \psi / \sqrt{g\beta\Delta TL_r^5}, \ \Omega = \omega \sqrt{L_r / (g\beta\Delta T)}, \end{split}$$

где L_r — размер газовой полости по оси r (рис. 1); T_{hs} — температура источника тепла; R, Z — безразмерные координаты, соответствующие координатам r, z; U, V — безразмерные скорости, соответствующие скоростям $V_r, V_z; \tau$ — безразмерное время; Θ — безразмерная температура; Ψ — безразмерный аналог функции тока; Ω — безразмерный аналог вектора вихря. На основе уравнений (1)–(5), переходя к переменным «функция тока – вектор завихренности скорости», получим следующую систему дифференциальных уравнений:

для газа (2 на рис. 1)

$$\tilde{\nabla}^2 \Psi - \frac{2}{R} \frac{\partial \Psi}{\partial R} = -R\Omega, \qquad (6)$$

$$\frac{\partial\Omega}{\partial\tau} + \frac{\partial(U\Omega)}{\partial R} + \frac{\partial(V\Omega)}{\partial Z} = \sqrt{\frac{\Pr}{\operatorname{Ra}}} \left(\tilde{\nabla}^2 \Omega - \frac{\Omega}{R^2} \right) + \frac{\partial\Theta}{\partial R}, \quad (7)$$

$$\frac{\partial\Theta}{\partial\tau} + \frac{\partial(U\Theta)}{\partial R} + \frac{\partial(V\Theta)}{\partial Z} = \frac{1}{\sqrt{\mathrm{Ra}\cdot\mathrm{Pr}}}\tilde{\nabla}^2\Theta - \frac{U\Theta}{R}; \quad (8)$$

• для твердых стенок (1 на рис. 1)

$$\frac{\partial \Theta}{\partial \tau} = \frac{a_{1,2}}{\sqrt{\operatorname{Ra} \cdot \operatorname{Pr}}} \tilde{\nabla}^2 \Theta.$$
(9)

Здесь Ra= $g\beta\Delta TL_r^3/va_2$ – число Рэлея; Pr= v/a_2 – число Прандтля; $a_{1,2}=a_1/a_2$ – относительный коэффициент температуропроводности;

$$\tilde{\nabla}^2 = \frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial}{\partial R} \right) + \frac{\partial^2}{\partial Z^2}$$

- безразмерный оператор Лапласа.

Начальные и граничные условия для сформулированной задачи (6)—(9) записываются следующим образом.

Начальное условие:

 $\Psi(R, Z, 0) = \Omega(R, Z, 0) = \Theta(R, Z, 0) = 0,$

за исключением источника тепла, на котором в течение всего процесса Θ =1.

Граничные условия:

 на границе *R*=*r*₁/*L_r* моделировался конвективный теплообмен с внешней средой

$$\frac{\partial \Theta}{\partial R} = \operatorname{Bi}(\Theta_e - \Theta)$$

• на границах *Z*=0, *z*₁/*L*_{*r*} для уравнения энергии заданы условия теплоизоляции

$$\frac{\partial \Theta}{\partial Z} = 0;$$

 на оси симметрии R=0 реализуются условия вида [13]:

$$\frac{\partial \Theta}{\partial R} = \Omega = \Psi = 0;$$

• на границе раздела твердого материала и газа *R*=1:

$$\Psi = 0, \quad \frac{\partial \Psi}{\partial R} = 0, \quad \Theta_1 = \Theta_2, \quad \frac{\partial \Theta_1}{\partial R} = \lambda_{2,1} \frac{\partial \Theta_2}{\partial R};$$

 на внутренних границах раздела твердого материала и газа, параллельных оси *R*:

$$\Psi = 0, \quad \frac{\partial \Psi}{\partial Z} = 0, \quad \Theta_1 = \Theta_2, \quad \frac{\partial \Theta_1}{\partial Z} = \lambda_{2,1} \frac{\partial \Theta_2}{\partial Z}$$

Здесь Ві= $\alpha L_n/\lambda_1$ – число Био материала твердой стенки; α – коэффициент теплообмена между внешней средой и рассматриваемой областью решения; Θ_e – безразмерная температура окружающей среды; $\lambda_{2,1} = \lambda_2/\lambda_1$ – относительный коэффициент

теплопроводности; λ_1 и λ_2 – коэффициенты теплопроводности материала твердой стенки и газа.

Краевая задача (6)–(9) с соответствующими начальными и граничными условиями решена методом конечных разностей [14, 15] на равномерной сетке 100×200 с использованием неявной двухслойной схемы. Для аппроксимации конвективных слагаемых применялась схема второго порядка точности, позволяющая учесть знак скорости [13], для диффузионных слагаемых – центральные разности. Уравнения параболического типа решались на основе локально одномерной схемы А.А. Самарского [15]. Аппроксимация ур. (6) проводилась с помощью пятиточечного шаблона «крест». Полученное разностное уравнение было решено методом последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов.

Анализ полученных результатов

Численные исследования краевой задачи (6)–(9) проведены при следующих значениях безразмерных комплексов: $10^4 \le \text{Ra} \le 10^6$; Pr=0,7; $0 \le \tau \le 300$; $\lambda_{2,1}=5,7\cdot10^{-4}, 4,3\cdot10^{-2}$; $r_1/z_1=0,25$ и $h/L_r=0,1$; 0,2, отражающих рабочие режимы технологических систем в условиях свободноконвективного теплопереноса. Основное внимание уделялось анализу влияния числа Рэлея, фактора нестационарности, а также относительного коэффициента теплопроводности $\lambda_{2,1}$ и толщины ограждающих стенок на распределения локальных характеристик и интегральных параметров.

На рис. 2 представлены линии тока и поля температуры, соответствующие различным значениям числа Рэлея.

Увеличение числа Рэлея, обусловленное ростом температуры источника энергии, приводит как к повышению средней температуры в области решения, так и к ослаблению интенсивности конвективного течения в газовой полости. Последнее связано с уменьшением градиента температуры с ростом τ в восходящем и нисходящем потоках газа. Необходимо также отметить смещение ядра конвективной ячейки к источнику энергии и значительное падение Ψ_{max} :

$$\begin{split} \left(\left| \Psi \right|_{\max} \right|_{Ra=10^{4}} &= 0,037 \right) > \left(\left| \Psi \right|_{\max} \right|_{Ra=10^{5}} &= 0,036 \right) > \\ &> \left(\left| \Psi \right|_{\max} \right|_{Ra=10^{6}} &= 0,021 \right). \end{split}$$

Такие изменения гидродинамической структуры определяются также и полем температуры (рис. 2, 3), которое при малых значениях Ra отражает влияние окружающей среды, поскольку температура внешней среды меньше начальной температуры области решения. При Ra=10⁴ в верхнем правом углу газовой полости заметно продвижение фронта пониженной температуры, которое и приводит к интенсификации конвективного течения. Дальнейший рост числа Рэлея проявляется в формировании термического факела над источником тепла и росте температуры на оси симметрии

Рис. 2. Линии тока и поля температуры при λ_{2,1}=5,7·10⁻⁴, τ=300, h/L₁=0,2: a) Ra=10⁴; б) Ra=10⁵; в) Ra=10⁶

a

(рис. 3). Вблизи поверхности правой стенки с ростом Ra заметно ускорение нисходящих газовых потоков, а также уменьшение толщины теплового пограничного слоя, что подтверждается положением изотермы Θ =0,3. В условиях вытеснения фронта пониженной температуры из газовой полости в верхних частях области решения при увеличении Рэлея происходит смещение зоны охлаждения твердой стенки к основанию области. Такая динамика позволяет утверждать, что интенсивности конвективного теплопереноса в газовой полости и кондуктивного теплообмена в твердой стенке значительно отличаются.

Рис. 3 отражает рост температуры в сечении Z=3,0 как в газе, так и в твердой стенке, а также неустойчивую стратификацию среды в вертикальном направлении.

Увеличение Ra приводит к понижению скорости потока на оси симметрии в сечении Z=3,0: $V|_{Ra=10^4}=0,49>V|_{Ra=10^5}=0,44>V|_{Ra=10^6}=0,37$ на 24 %. Выравнивание профиля вертикальной компоненты скорости с ростом Рэлея обусловлено падением градиента температуры с ростом τ и, соответственно, уменьшением скорости конвекции $\sqrt{g\beta\Delta TL_r}$. При Ra=10⁶ наблюдалось наиболее значительное понижение модуля скорости как на оси симметрии, так и вблизи вертикальной стенки.

Проведен анализ влияния числа Рэлея, толщины вертикальной стенки и $\lambda_{2,1}$ на среднее число Нуссельта на поверхности источника тепла

Nu_{*avg*} =
$$\int_{0}^{1} \left| \frac{\partial \Theta}{\partial Z} \right|_{Z=0,47} dR$$
 (рис. 4). С повышением Ra

наблюдается значительный рост обобщенного коэффициента теплообмена. Увеличение относительного коэффициента теплопроводности, обусловленное уменьшением λ_1 , отражается также на повышении среднего числа Нуссельта, что связано с более интенсивным отводом тепла от поверхности

Рис. 3. Профили температуры при λ_{2,1}=5,7·10⁻⁴, τ=300, h/L_r=0,2: a) Z=3,0; б) R=0

источника энергии. При этом увеличение толщины стенки приводит к уменьшению Nu_{avg}. Степень понижения обобщенного коэффициента теплообмена зависит и от теплопроводности материала стенок.

Рис. 4. Зависимость среднего числа Нуссельта от числа Рэлея, толщины стенки и относительного коэффициента теплопроводности при τ=300

Фактор нестационарности в сопряженных задачах конвективного теплопереноса определяет не только этапы развития вихревых структур в газовой полости, но и термическую инерционность ограждающих твердых стенок.

На рис. 5 представлены профили температуры в различные моменты времени. С увеличением времени до $\tau=9$ наблюдался рост масштабов основной конвективной ячейки и диссипация вторичной рециркуляции. Последнее связано с увели-

чением размеров термического факела и повышением средней температуры в полости. Необходимо отметить, что изменение безразмерного времени в диапазоне $3 \le \tau \le 300$ приводит к увеличению значения $|\Psi|_{max}$ на 7 %, отражающего интенсивность течения. Основные преобразования поля течения связаны с ростом масштабов конвективной ячейки. Увеличение τ также сказывается на прогреве верхней стенки, что приводит к смещению фронта пониженной температуры.

Необходимо отметить, что увеличение безразмерного времени проявляется в уменьшении среднего числа Нуссельта на поверхности источника тепловыделения, что связано с постепенным понижением градиента температуры вблизи нагревателя, вследствие прогрева этой зоны. При Ra=10⁴, 10⁵ наблюдался монотонный выход обобщенного коэффициента теплообмена на стационарные значения, а при Ra=10⁶ появлялись колебания в распределении Nu_{оуг} на начальном временной участке.

Заключение

- Численно решена нестационарная сопряженная задача термогравитационной конвекции в типичном элементе технологической системы цилиндрической формы с соотношением сторон r₁/z₁=0,25 при наличии источника тепловыделения постоянной температуры, расположенного в основании полости, в условиях конвективного теплообмена с окружающей средой на боковой поверхности объекта исследования.
- Установлено, что увеличение числа Рэлея приводит к смещению ядра конвективной ячейки к источнику энергии, а также отражает степень воздействия конвективного теплопереноса в газовой полости на распределение температуры в твердой стенке.

Рис. 5. Профили температуры при λ_{2,1}=5,7·10⁻⁴, Ra=10^₅, h/L_r=0,1: a) Z=1,0; б) R=0

 Показано, что увеличение толщины стенки сказывается на уменьшении среднего числа Нуссельта на поверхности нагревателя. Степень понижения обобщенного коэффициента теплообмена зависит и от теплопроводности материала стенок.

СПИСОК ЛИТЕРАТУРЫ

- Jaluria Y. Design and Optimization of Thermal Systems. N.Y.: McGraw-Hill, 1998. – 626 p.
- Гебхарт Б., Джалурия Й., Махаджан Р., Саммакия Б. Свободноконвективные течения, тепло- и массообмен. – М.: Мир, 1991. – Т. 1. – 678 с.
- 3. Bejan A. Convection Heat Transfer. N.Y.: Wiley, 2004. 696 p.
- Liaqat A., Baytas A.C. Numerical comparison of conjugate and nonconjugate natural convection for internally heated semi-circular pools // Int. J. Heat Fluid Flow. – 2001. – V. 22. – P. 650–656.
- Liaqat A., Baytas A.C. Conjugate natural convection in a square enclosure containing volumetric sources // Int. J. Heat Mass Transfer. – 2001. – V. 44. – № 17. – P. 3273–3280.
- Mobedi M. Conjugate natural convection in a square cavity with finite thickness horizontal walls // Int. Comm. Heat Mass Transfer. – 2008. – V. 35. – № 4. – P. 503–513.
- Li-Zhi Zhang, Cai-Hang Liang, Li-Xia Pei Conjugate heat and mass transfer in membrane-formed channels in all entry regions // Int. J. Heat Mass Transfer. – 2010. – V. 53. – № 5–6. – P. 815–824.
- Cheng Y.P., Lee T.S., Low H.T. Numerical simulation of conjugate heat transfer in electronic cooling and analysis based on field synergy principle // Applied Thermal Engineering. – 2008. – V. 28. – № 14–15. – P. 1826–1833.

Работа выполнена в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 гг. (ГК № П2225), а также при финансовой поддержке Президента Российской Федерации (МК-396.2010.8).

- Кузнецов Г.В., Шеремет М.А. Двумерная задача естественной конвекции в прямоугольной области при локальном нагреве и теплопроводных границах конечной толщины // Известия РАН. Механика жидкости и газа. – 2006. – № 6. – С. 29–39.
- Кузнецов Г.В., Шеремет М.А. Математическое моделирование тепломассопереноса в условиях смешанной конвекции в прямоугольной области с источником тепла и теплопроводными стенками // Теплофизика и аэромеханика. – 2008. – Т. 15. – № 1. – С. 107–120.
- Лойцянский Л.Г. Механика жидкости и газа. М.: Дрофа, 2003. – 840 с.
- Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. – 600 с.
- Роуч П. Вычислительная гидродинамика. М.: Мир, 1980. 616 с.
- Пасконов В.М., Полежаев В.И., Чудов Л.А. Численное моделирование процессов тепло- и массообмена. – М.: Наука, 1984. – 288 с.
- Самарский А.А. Теория разностных схем. М.: Наука, 1977. 656 с.

Поступила 08.06.2010 г.

УДК 621.1.0161.7

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ ПАРОВОЙ ФАЗЫ ПРИ ПРОСТОЙ ПЕРЕГОНКЕ ВЕЩЕСТВ

Д.В. Феоктистов, В.С. Логинов

Томский политехнический университет

E-mail: dmitrytpu@inbox.ru

Составлен тепловой баланс заводского перегонного аппарата АРНП-2 с экспериментальными замерами величин, входящих в корреляции по определению фактически используемых теплот. Проведен анализ эмпирически полученных термограмм однокомпонентных и бинарных водных жидкостей в процессе нагрева и охлаждения в ходе, которого выявлены границы интервалов изменения температур в зависимости от состава разгоняемых веществ. Найдены корреляции изменения температуры паровой фазы в процессе прогрева (I интервал) и охлаждения (V интервал) при простой перегонке веществ.

Ключевые слова:

Тепловой баланс, перегонка, опытные данные, термограмма.

Key words:

Heat balance, distillation, experimental data, thermogram.

Задача расчета процесса однократной перегонки часто формулируется следующим образом: дан исходный раствор известного состава, требуется отогнать от него определенную долю легколетучего компонента и рассчитать, каковы должны быть составы образующихся фаз и температура процесса [1]. Состав равновесных фаз, отвечающих заданной степени отгона, чаще всего определяется путем совместного решения уравнений материального баланса и фазового равновесия.

Прогнозирование необходимой температуры для отгона легколетучего компонента представляется возможным, если использовать диаграмму y-x-t [1]. Данный графический способ не дает решение поставленной задачи относительно времени проведения процесса перегонки до необходимой температуры.