УДК 621.396

ОПТИМИЗАЦИЯ ФУНКЦИОНИРОВАНИЯ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

В.И. Павлов, В.В. Аксенов, Т.В. Белова

ГОУ ВПО «Тамбовский государственный технический университет» E-mail: vpavl@mail.ru

Рассмотрены вопросы адаптации измерительных систем к изменяющимся условиям функционирования путем одновременного управления структурой измерителей и процессом измерения.

Ключевые слова:

Измерения, адаптация, управление структурой.

Key words:

Measurements, adaptation, management of structure.

Под измерительной системой (ИС) понимается совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству. При организации функционирования ИС наиболее трудной является адаптация к изменениям как внешней сигнально-помеховой обстановки, так и собственного внутреннего состояния. Вне зависимости от принципа действия, а также от того, является ли ИС измерительно-информационной, измерительно-контролирующей или измерительно-управляющей, изменения сигнально-помеховой обстановки обусловлены объективными причинами: воздействием естественных помех; изменением во времени контролируемого пространства и измеряемых физических величин; взаимными помехами измерительных приборов.

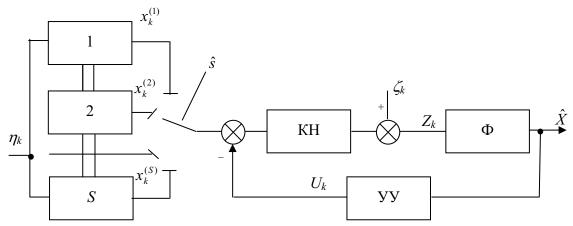
Изменчивость внутреннего состояния ИС связана, по крайней мере, с двумя обстоятельствами. Первое – необходимостью объединения в единую систему устройств, выполняющих одновременно, или на неперекрывающихся временных интервалах различные функции. Например, в радиотехнических системах (локация, навигация, связь) ИС объединяет устройства, выполняющие поиск, обнаружение, анализ и сопровождение измеряемого сигнала, реализующие принципиально отличающиеся режимы функционирования. Второе различного рода нарушения функционирования (отказы). Нарушения функционирования могут быть вызваны рядом причин, таких как старение, износ, изменения температурного режима и др. Отказы, приводящие к скачкообразному изменению характеристик ИС, достаточно легко идентифицируются и могут быть учтены в процессе функционирования. Отказы, приводящие к постепенным изменениям, трудно идентифицируются и приводят к существенному искажению результатов измерений.

Наиболее полно учесть разнородные неблагоприятные факторы удается при синтезе ИС в классе систем со случайной скачкообразной структу-

рой. Под такими системами понимаются наблюдаемые и управляемые в дискретные моменты времени стохастические динамические системы, структура которых имеет конечное число возможных состояний, сменяющих друг друга в случайные моменты времени [1]. Кроме того, скачки параметров в ИС можно также рассматривать как частный случай скачкообразного изменения структуры, когда связи между элементами системы не меняются, а каждому значению параметра соответствует свое состояние структуры.

ИС со случайной структурой удобно характеризовать номером структуры s(k)=1, S и вектором состояния X_k . Учитывая то, что алгоритмическое обеспечение ИС ориентировано на цифровую вычислительную технику вектор X_k может быть дискретной случайной непрерывнозначной последовательностью, дискретной цепью или дискретным процессом [2]; номер s_k — дискретной последовательностью — цепью, принимающей значения на конечном счетном множестве $\overline{1}$, \overline{S} .

Структура ИС следящего типа со случайными скачкообразными изменениями показана на рисунке в виде схемы подключения датчиков [1].


Математическая модель функционирования ИС как динамической дискретной нелинейной стохастической системы со случайной структурой может быть представлена в виде системы уравнений:

$$X_{k+1} = \Phi_{k+1}^{(s)} X_k + B_k^{(s)} U_k + F_k^{(s)} \xi_k ; \qquad (1)$$

$$Z_{k} = C_{k}^{(s)}(\mu_{k}, \gamma_{k}) X_{k} + N_{k}^{(s)} \zeta_{k};$$
 (2)

$$\mu_k = f_{k-1}^{(s)}(\mu_{k-1}, \gamma_k), \qquad \mu_0 = \widehat{\mu}_0, \quad k = \overline{1, K},$$
(3)

где $\Phi_{k,k+1}^{(s)}$ — переходная матрица состояния; $B_k^{(s)}$, $F_k^{(s)}$ — заданные матрицы с компонентами — функциями измеряемого вектора X_k ; U_k — вектор управления положением ИС в контролируемом пространстве относительно исследуемого объекта; $C_k^{(s)}$ (μ_k, γ_k) — детерминированная матрица, зависящая от параметров μ_k и γ_k , определяющих условия измерения в s-й структуре; s — индекс, соответствующий номеру структуры ИС; $N_k^{(s)}$ — заданная матрица; ξ_k , ζ_k — векторы независимых центрированных дискретных гауссовских белых шумов с матрицами корреля-

Рисунок. Структура измерительной системы следящего типа со случайными скачкообразными изменениями: η_k – входной сигнал UC; 1,2,...,S – номера датчиков; $x_k^{(S)}$ – выходные сигналы датчиков; \hat{s} – оценка s_k ; Z_k , \hat{X} , U_k – выходные сигналы канала наблюдения (КН), фильтра (Ф) и устройства управления (УУ); ζ_k – случайная помеха; k – 1, 2,..., K – последовательность шагов счета

ционных функций $K_{\xi}(k,h)=G_k\delta_{kh}$ и $K_{\xi}(k,h)=Q_k\delta_{kh}$ соответственно; δ_{kh} — функция Кронекера. Уравнение (3) описывает условия измерения в *s*-й структуре: μ_k — состав измеряемых параметров; γ_k — управление процессом измерения при ограничениях

$$\gamma_k \in \Gamma_K, \ g(\mu_k) \le \overline{g};$$
 (4)

функции $f_{k-1}{}^{(s)}(*)$, g(*), величина \overline{g} и множество Γ_k являются заданными.

Модель (1)—(3) описывает процедуру управления процессом измерения в ИС. В зависимости от конкретного вида управления $\{\gamma_k\}$ рассматриваются следующие задачи управления измерениями [3].

1. Выбор программы (режима) измерения.

В этом случае параметры γ_k и μ_k являются скалярными. Множество Γ_k состоит из двух элементов: Γ_k ={0, 1}, при этом γ_k =1, если в момент k измерение производится, γ_k =0 — если не производится. Уравнение (3) для s-й структуры принимает вид μ_k = μ_{k-1} + γ_k , μ_0 =0 с учетом ограничений

$$\mu_K = \sum_{k=1}^K \gamma_k \le K_{\Sigma},$$
 где K_{Σ} – заданное число измере-

ний. В уравнении (2) $C_k^{(s)}(\mu_k, \gamma_k) = \gamma_k C_k^{(s)}$, где $C_k^{(s)} -$ дискриминационная характеристика канала наблюдения в *s*-й структуре.

2. Выбор состава измеряемых параметров.

При выборе параметров для измерения ур. (3) формально записывается как $\mu_k = \gamma_k$, а дискриминационная матрица в (2) как $C_k^{(s)}(\mu_{k,2k}) = \mu_k$. Таким образом, матричное управление $\gamma_k \in D_k$ задает состав измеряемых параметров, а множество Γ_k — потенциально возможный их набор.

3. Выбор положения (траектории движения) ИС.

В некоторых случаях имеются дополнительные возможности для повышения эффективности измерительных средств за счет улучшения условий их эксплуатации. В этих случаях в (2) μ_k являются координатами X_k относительного положения ИС и исследуемого объекта, а γ_k — вектором управления U_k положением ИС. Множество Γ_k характе-

ризует энергетические возможности ИС. Ограничение (4) отражает требование на положение ИС в терминальный момент.

При выборе траектории движения ИС модель (1)—(3) будет иметь вид:

$$X_{k+1} = \Phi_{k,k+1}^{(s)} X_k + B_k^{(s)} (X_k) U_k + F_k^{(s)} \xi_k ; {5}$$

$$Z_{k} = C_{k}^{(s)}(X_{k}, U_{k})X_{k} + N_{k}^{(s)}\zeta_{k};$$
(6)

$$C_k^{(s)}(X_k, U_k) = C_{0k}^{(s)}(U_k) + \sum_{i=1}^n c_{jk}^{(s)}(U_k) X_k, \qquad (7)$$

где $C_{0k}^{(s)}$ — статистическая характеристика нелинейной функции; $c_{jk}^{(s)}$ — коэффициенты статистической линеаризации по центрированным фазовым переменным; n — размерность вектора состояния X_k . Коэффициенты $C_{0k}^{(s)}$ и $c_{jk}^{(s)}$ вычисляются по известным правилам с использованием гауссовой аппроксимации апостериорной плотности вероятности [4]. В итоге эти коэффициенты зависят от управлений U_k , апостериорных математических ожиданий $\hat{X}_{jk}^{(s)}$ и корреляционных матриц G_k и Q_k .

В качестве дополнительной составляющей в модели (5)—(7) выступает процедура оптимизации управлений U_k в соответствии с предварительно обоснованным критерием. Так, например, если целью управления измерениями является только повышение качества фильтрации, то «информационным» критерием являются средние потери

$$I(\widehat{X}_k) = M[\Psi(X_k, \widehat{X}_k)] =$$

$$= \sum_{k=1}^{S} \int_{-\infty}^{\infty} \Psi(X_k, \widehat{X}_k) \widehat{p}_k(X) dX;$$
(8)

$$\Psi(X_{k}, \widehat{X}_{k}) = \sum_{j=1}^{n} [X_{jk} - \widehat{X}_{jk}]^{2},$$
 (9)

где $\Psi(X_k, X_k)$ — квадратичная функция потерь; $\hat{p}_k(X)$ — апостериорная плотность вероятности вектора состояния X, а выходным сигналом устройства управления будет $U_k = \hat{X}_k$.

Если целью управления является одновременное повышение качества фильтрации и улучшение характеристик измерения за счет изменения положения ИС, то возникает задача оптимизации движения ИС по обобщенному «информационно-механическому» критерию типа

$$J(\widehat{X}_k) = \alpha I(\widehat{X}_k) + \beta L(\widehat{X}_k); \tag{10}$$

$$L(\widehat{X}_k) = [\widehat{X}_k - X_{\text{OII}}]^2, \tag{11}$$

где α и β — весовые коэффициенты, отражающие требования по точности оценивания вектора X и наилучшему расположению ИС относительно исследуемого объекта, $X_{\rm OII}$ — вектор фазовых координат ИС относительно исследуемого объекта, при которых обеспечиваются наилучшие условия измерения. Решение данной задачи приводит к необходимости управления положением ИС по правилу

$$U_{\scriptscriptstyle k} = \begin{cases} U_{\scriptscriptstyle \rm max}, & \text{при} \quad U_{\scriptscriptstyle k} \geq U_{\scriptscriptstyle \rm max}; \\ U_{\scriptscriptstyle OC}, & \text{при} \quad U_{\scriptscriptstyle k} < \left| U_{\scriptscriptstyle \rm max} \right|; \\ -U_{\scriptscriptstyle \rm max}, & \text{при} \quad U_{\scriptscriptstyle k} \leq -U_{\scriptscriptstyle \rm max}, \end{cases}$$

где $U_{\rm OC}$ — особое управление, определяемое по методике согласно [5], физический смысл которого заключается в обеспечении положения ИС, компромиссного с точки зрения двух противоположных целей, отраженных в критерии (10).

Для одновременного обеспечения устойчивости при действии взаимных помех от различных датчиков и требуемого качества фильтрации оптимизация ИС должна осуществляться по «информационно-программному» критерию типа

$$F(\widehat{X}_{k}) = I(\widehat{X}_{k}) + M(\widehat{X}_{k}, Z_{k}, U_{k});$$

$$M(\widehat{X}_{k}, Z_{k}, U_{k}) = \int_{-\infty}^{\infty} \Psi(X_{k}, \widehat{X}_{k}) \widehat{p}_{k}(X) dX \times$$

$$\times \int_{-\infty}^{\infty} \phi_{k}^{(s)}(X, Z, U) \widehat{p}_{k}^{(s)}(X) dX;$$

$$(13)$$

$$\phi_{k}^{(s)}(X,Z,U) = \sum_{l,q=1}^{n} \frac{\overline{Q}_{lq}^{(s)}}{|Q^{(s)}|} [Z_{k} - C_{lk}^{(s)}(\mu_{k},\gamma_{k})X_{k}] \times [Z_{k} - C_{qk}^{(s)}(\mu_{k},\gamma_{k})X_{k}],$$
(14)

где l,q — индексы соответствующих составляющих вектора состояния ИС; \overline{Q}_{lq} — алгебраическое дополнение элемента Q_{lq} в определителе |Q| матрицы шу-

СПИСОК ЛИТЕРАТУРЫ

- Казаков И.Е., Артемьев В.М. Оптимизация динамических систем случайной структуры. – М.: Наука, 1980. – 382 с.
- 2. Тихонов В.И., Миронов М.А. Марковские процессы. М.: Советское радио, 1977. 578 с.
- 3. Малышев В.В., Красильщиков М.Н., Карлов В.И. Оптимизация наблюдения и управления летательных аппаратов. М.: Машиностроение, 1989. 240 с.
- Казаков И.Е. Методы исследования нелинейных автоматических систем, основанные на статистической линеаризации.

мов измерителя. В этом случае управление становится двухуровневым. Управление первого уровня определяется исходя из минимизации (13) для каждой s-й структуры, результатом чего является выбор целесообразного номера s, соответствующего сложившейся помеховой обстановке, и программы $f_{k+1}^{(s)}(\mu_k, \gamma_{k+1})$ для очередного шага. На втором уровне решается задача повышения качества фильтрации в соответствии с критерием (9).

Оценка вектора состояния ИС может быть получена на основании апостериорной плотности вероятности. Апостериорная плотность вероятности $\hat{p}_k^{(s)}(X)$ вектора состояния ИС в *s*-й структуре определяется с помощью формулы Байеса на основании априорной плотности вероятности $p_k^{(s)}(X)$ и измерения Z_k

$$\widehat{p}_{k}^{(s)}(X) = \frac{p^{(s)}(X) \exp[-0.5\Delta t \varphi_{k}^{(s)}(X, Z, U)]}{\sum_{s=1}^{S} \int_{-\infty}^{\infty} p^{(s)}(X) \exp[-0.5\Delta t \varphi_{k}^{(s)}(X, Z, U)] dX}, \quad (15)$$

где $\Delta t = t_k - t_{k-1}$, а $\varphi_k^{(s)}(X, Z, U)$ вычисляется по формуле (14). Вычисление апостериорной плотности вероятности $\hat{p}_k^{(s)}(X)$ на основании формулы (15) может быть выполнено по аналогии с [6]. Для вычисления \hat{s} в реальном масштабе времени необходимо задать априорные значения $p_k^{(s)}(X)$, которые определяются исходя из конкретных физических особенностей функционирования ИС. Определение \hat{s} , соответствующей сложившейся в текущий момент времени помеховой обстановки, осуществляется по критерию

$$\hat{s} = \arg\max\{\hat{p}_k^{(s)}(X)\}. \tag{16}$$

Таким образом, управление потоком входной информации ИС в соответствии с рисунком, обоснование и выбор критерия управления ИС (8, 9), (10, 11) или (12, 13), возможность расчета апостериорных характеристик расширенного вектора состояния $\{X_k, s_k\}$ методами теории систем со случайной скачкообразной структурой и определение складывающейся помеховой обстановки по критерию (16) позволяют адаптировать к изменяющимся условиям как структуру, так и способ обработки информации в ИС с единых позиций.

Статья подготовлена при поддержке РФФИ, грант № 09-08-00570-а.

- Современные методы проектирования систем управления. М.: Машиностроение, 1967. 238 с.
- Казаков И.Е. Статистические методы проектирования систем управления. – М.: Машиностроение, 1969. – 260 с.
- Pavlov V.I. Automation of the monitoring and controlling of the state of complex technical systems // Chemical and Petroleum Engineering. 1997. № 3. P. 278–280.

Поступила 14.05.2010 г.