УДК 519.688:552.578.2.061.4

МЕТОД АДАПТИВНОЙ ИДЕНТИФИКАЦИИ ГИДРОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН С УЧЕТОМ АПРИОРНОЙ ИНФОРМАЦИИ

В.Л. Сергеев, В.С. Аниканов

Томский политехнический университет E-mail: SergeevVL@ignd.tpu.ru

Рассматриваются метод адаптивной идентификации параметров нефтяных пластов в процессе проведения гидродинамических исследований скважин с учетом априорной информации. Приводятся пример определения пластового давления и фильтрационных параметров однородно пористых нефтяных пластов по данным исследований скважины нефтяного месторождения на неустановившихся режимах фильтрации по кривой восстановления давления.

Ключевые слова:

Идентификация, гидродинамические исследования скважин, априорная информация, нефтяные пласты.

Key words:

Identification, hydrodynamic analysis of oil wells, a priori information, oil pools.

Гидродинамические исследования скважин (ГДИС) обеспечивают получение важнейших параметров нефтяных пластов, на основании которых осуществляются процессы добычи нефти, составляются технологические проекты разработки месторождений, создаются геолого-технологические модели процессов нефтегазодобычи. Задача идентификации для ГДИС состоит в построении оптимальной, в смысле заданных показателей качества, модели гидродинамических параметров скважины (забойное давление, дебит, динамический уровень, температура и т. п.) и оценке неизвестных фильтрационных параметров, энергетического состояния и геометрических параметров нефтяных пластов.

Следует отметить, что многие классические методы решения задач идентификации для ГДИС (метод касательных, наилучшего совмещения, детерминированных моментов и т. д.) не гарантируют устойчивость оценок параметров пласта и допустимую точность решений [1, 2]. Неустойчивость и низкая точность решений часто проявляются в условиях малых выборок, когда по ряду технических причин, в том числе и в целях сокращения времени простоя скважины, уменьшения потери добычи нефти, требуется прервать исследования. Изменение режимов работы скважин, влияние границ пласта, неоднородностей приводит к появлению дефектных (аномальных) значений забойных давлений и дебитов исследуемых скважин, что является причиной неустойчивости решения. Другая особенность классического подхода связана с планированием исследований и проведением интерпретации результатов ГДИС после их завершения, что часто приводит к простоям скважин и значительным затратам.

Наиболее общим продуктивным решением задачи идентификации ГДИС с использованием системного подхода является предложенный в [3, 4] метод интегрированных моделей, позволяющий объединить модели гидродинамических параметров исследуемой скважины, модели дополнительных априорных сведений и экспертные оценки в единую систему моделей, что обеспечивает устойчивость и повышает точность оценок параме-

тров нефтяных пластов, позволяет получать оптимальные, согласованные решения.

Данная работа является развитием технологии интегрированных моделей при идентификации и интерпретации ГДИС, где для сокращения времени простоя скважин предлагаются модели и алгоритмы, позволяющие определять параметры нефтяных пластов в процессе проведения исследований, не планируя заранее время их завершения.

В основе предлагаемого метода адаптивной идентификации использована интегрированная система моделей гидродинамических параметров скважин с учетом априорной информации вида:

$$\begin{cases} y_n^* = f_0(\boldsymbol{\alpha}_n, \mathbf{x}_n^*) + \xi_n, n = 1, 2, 3, \dots \\ \mathbf{z} = F(\boldsymbol{\alpha}_n, y, \mathbf{x}) + \boldsymbol{\eta}, \end{cases}$$
(1)

где y_n^* , \mathbf{X}_n^* измеренные на скважине в моменты времени t_n значения гидродинамических параметров y, $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_r)$; $\overline{\mathbf{z}} = (\overline{z}_k, k = \overline{1,p})$, — вектор значений дополнительных априорных данных параметров нефтяных пластов и скважин; f_0 , $F = (f_1, f_2, ..., f_p)$ — известные с точностью до вектора параметров $\alpha_n = (\alpha_{kn}, k = \overline{1,m})$ функции; ξ_n , $\eta = (\eta_j, j = \overline{1,p})$ — случайные величины, представляющие погрешности измерений гидродинамических параметров скважин, ошибки априорных данных, экспертных оценок, неточности моделей f_0 , F_a и т. п.

Метод адаптивной идентификации ГДИС с учетом дополнительной априорной информации заключается в последовательном, по мере получения информации y_n^* , \mathbf{x}_n^* , вычислении вектора оценок параметров $\alpha_n(1)$ путем решения оптимизационной задачи

$$\boldsymbol{\alpha}_{n}^{*}(\boldsymbol{\beta}) = \arg\min_{\boldsymbol{\alpha}_{n} \in R_{m}} \Phi(J_{0}(\boldsymbol{\alpha}_{n}), \beta_{k} J_{k}(\boldsymbol{\alpha}_{n}), k = \overline{1, p},),$$

$$n = \overline{1, n}_{k}, \tag{2}$$

анализа точности полученных приближений и принятии решения о прекращении исследований. Здесь запись arg min f(x) означает точку минимума x^* функции $f(x)(f(x^*)=\min_x f(x)); \Phi$ — векторный показатель качества (1), состоящий из частного показателя качества $J_0(\alpha_n)$ модели гидродинами-

ческих параметров и взвешенных весами β_k частных показателей качества $J_k(\alpha_n)$ моделей дополнительных априорных сведений; n_k — объем измерений забойного давления, необходимых для обеспечения требуемой точности оценок $\alpha_n^*(\beta)$.

Решение о прекращении исследований может быть принято на основе визуального анализа графика зависимости приближений (2) от времени (см. рис. 1-3) либо по критерию стабилизации оценок, где, например, за момент их завершения n_k , принимается то значение n_k , при котором выполняется неравенство

$$\left| (\alpha_{n-i}^* - \alpha_n^*) / \alpha_n^* \right| \le \text{eps}, i = 1, 2, 3, \dots$$

(eps — заданная точность).
$$(3)$$

Следует отметить, что при значениях управляющих параметров, равных нулю, априорная информация не учитывается, и оценки (2) при использовании квадратичного показателя качества $J_0(\alpha_n)$ совпадают с классическими оценками метода наилучшего совмещения [1, 2]

$$\boldsymbol{\alpha}_{n}^{*}(0) = \arg\min_{\boldsymbol{\alpha}_{n} \in R_{m}} (J_{0}(\boldsymbol{\alpha}_{n})) = \sum_{i=1}^{n} (y_{i}^{*} - f_{0}(\boldsymbol{\alpha}_{n}, \mathbf{x}_{i}^{*}))^{2}). \quad (4)$$

Рассмотрим решение задачи (2) на примере идентификации и интерпретации нестационарных ГДИС на неустановившихся режимах фильтрации по кривой восстановления давления (КВД) однородного пористого нефтяного пласта, где в качестве модели забойного давления скважины часто используется функция [1, 2]:

$$P(t) = f_0(t, \alpha_1, \alpha_2) = P(t_0) + \alpha_1 + \alpha_2 \ln(t).$$
 (5)
B (5)

$$\alpha_1 = \frac{q_0}{4\pi\sigma} \ln\left(\frac{\chi}{r_c^2}\right), \ \alpha_2 = \frac{q_0}{4\pi\sigma},$$

где σ и χ — гидропроводность и пьезопроводность нефтяного пласта; q_0 — дебит скважины в момент ее остановки t_0 ; $P(t_0)$ — начальное значение забойного давления; r_c =0,1 м — радиус скважины. Для (5) интегрированная система моделей КВД по аналогии с (1) примет вид

где $y_n^* = P_n^* - P(t_0)$; $n = \overline{1, n_k}$ — измеренные в моменты времени t_n значения забойного давления скважи-

ны;
$$\overset{-}{\alpha}_1 = \frac{q_0}{4\pi \, \overline{\sigma}} \ln(\frac{\overset{-}{\chi}}{r_c^2}), \overset{-}{\alpha}_2 = \frac{q_0}{4\pi \, \overline{\sigma}} \; \overline{\sigma}; \; \sigma, \; \overline{\chi} \; - \;$$
допол-

нительные априорные данные о пьезопроводности и гидропроводности нефтяного пласта;

При выборе комбинированного показателя качества $\Phi(\alpha_n)$ для системы моделей (6) в виде свертки частных показателей

$$\Phi(\boldsymbol{\alpha}_{n}) = J_{0}(\boldsymbol{\alpha}_{n}) + \sum_{k=1}^{2} \beta_{k} J_{k}(\boldsymbol{\alpha}_{n}) =$$

$$= \left\| \boldsymbol{Y}^{*} - F \boldsymbol{\alpha}_{n} \right\|_{W_{0}}^{2} + \left\| \overline{\boldsymbol{\alpha}} - \boldsymbol{\alpha}_{n} \right\|_{W_{-}}^{2}, \tag{7}$$

оптимизационная задача (2) сводится к решению системы линейных алгебраических уравнений

$$(A^{T}W_{0}A + W)\boldsymbol{\alpha}_{*}^{*}(\boldsymbol{\beta}) = (A^{T}W_{0}Y^{*} + W_{0}\boldsymbol{\alpha}), \tag{8}$$

где запись $\|X\|_{w^2}$ означает квадратичную форму X^TWX^T ; $A=(1,\ln(n),n=\overline{1,n_k})$ — матрица размерности $(n_k\times 2)$; $Y^*=(y_n^*,n=\overline{1,n_k})$ — вектор; $\overline{\alpha}=(\overline{\alpha}_1,\overline{\alpha}_2)$ — априорные данные о параметрах модели КВД (6); W=diag $(w(n),n=\overline{1,n_k})$ — диагональная матрица весовой функции w(t), определяющая веса забойных давлений $P^*(T_n)$ в текущий момент времени t_n ; $W_a=$ diag (β_1,β_2) — диагональная матрица управляющих параметров $\beta=(\beta_1,\beta_2)$, определяющих значимость (вес) априорных данных $\overline{\alpha}$. Для получения (8) достаточно взять частные производные по параметрам α_n от комбинированного функционала (7) и приравнять их к нулю.

Следует отметить, что выбор весовой функции w(t) в частном функционале качества $J_0(\alpha_n)$ (7) зависит от принятой стратегии обработки КВД. Например, при весовой функции вида w(n)=1, $\forall n = \overline{1,n_k}$ все значения забойного давления «равноправны», что целесообразно в случае адекватной модели КВД (5). При w(n)=1, $n \in [n_1,n_2]$, w(n)=0, $n \notin [n_1, n_2], n_2 > n_1$ в обработке участвуют данные, попавшие в выбранный для интерпретации участок КВД $[n_{\mu}+n_{1},n_{\mu}+n_{2}]$. Для метода адаптивной идентификации целесообразно использовать стратегию «скользящего интервала» $[n_{1}+n_{1}+i, n_{2}+i]$, $1 ≤ i ≤ n_k - n_u - n_2$. Здесь i — номер интервала, n_u — количество измерений забойного давления в начальном участке КВД $[t_0,t_u]$, который, как правило, исключают в связи с проявлением там спектра трудно формализуемых эффектов влияния ствола, скинфактор скважины и т. п. [1, 2].

На рис. 1—3 приведены оценки пластового давления, гидропроводности и пьезопроводности, полученные при интепретации результатов гидродинамических исследований скважины № 323 нефтяного месторождения Тюменской области на неустановившихся режимах фильтрации по КВД. Обработка результатов ГДИС проводилась с использованием метода адаптивной идентификации (АИ) (2) для модели КВД (5) и метода наилучшего совмещения (НС) (4), который, по аналогии с (8), сводится к решению системы линейных уравнений:

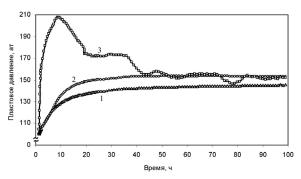
$$(A^{T}W_{0}A)\alpha_{n}^{*}(0) = A^{T}W_{0}Y^{*}.$$

Оценки пластового давления $P_{nl}^*(n)$, гидропроводности σ_n^* и пьезопроводности χ_n^* рассчитаны с использованием стратегии «скользящего интервала» при $n_2=10$, $n_1=0$ и $n_u=6$

$$P_{nn}^{*}(n) = P_{s}(t_{0}) + a_{1n}^{*}(\beta^{*}) + a_{2n}^{*}(\beta^{*}) \ln(T),$$

$$\sigma_{n}^{*} = q_{0} / 4\pi\alpha_{2n}^{*}(\beta^{*}),$$

$$\chi_{n}^{*} = r_{c}^{2} \exp(a_{1n}^{*}(\beta^{*}) / a_{2n}^{*}(\beta^{*})),$$


где $a_{1n}^*(\beta^*)$, $a_{2n}^*(\beta^*)$ — оценки параметров модели КВД (5), полученные к моменту времени t_n ; T=200 ч; β_n^* — оценка управляющего параметра β матрицы W_a = βI (где I — единичная матрица) из решения оптимизационной задачи

$$\beta_n^* = \arg\min_{\beta_n} \left\| Y^* - F \boldsymbol{\alpha}_n (\beta_n) \right\|^2$$

методом золотого сечения. В качестве априорных сведений использовались данные о гидропроводности $\overline{\sigma}$ =1 Дсм/сП и пьезопроводности $\overline{\chi}$ =4·10⁻⁴ м²/с.

Таблица. Результаты обработки КВД скважины № 323 нефтяного месторождения Тюменской области

Методы	Время, ч	Пластовое давление, ат	Пьезопро- водность, 10 ⁻⁴ , м ² /с	Гидропро- водность, Дсм/сП
«PanSystem»	99	152,3	4,53	1,3
Адаптивной идентифика- ции	40	153,4	5,00	1,4
	60	153,7	4,97	1,4
	80	153,6	4,97	1,4
	99	153,4	4,99	1,4
Наилучшего совмещения	40	161,1	3,11	0,9
	60	154,4	4,88	1,4
	80	148,4	13,20	3,7
	99	152,3	6,18	1,7

Рис. 1. КВД (кривая 1). Оценки пластового давления методами АИ и НС (кривые 2, 3)

В таблице приведены оценки пластового давления, пьезопроводности и гидропроводности, полученные с использованием зарубежного программного комплекса «PanSystem» при обработке всей КВД за 99 ч исследований и методами адаптивной идентификации и наилучшего совмещения за разные периоды исследований.

Из рис. 1—3 и таблицы видно, что предложенный метод адаптивной идентификации с учетом априорной информации при интерпретации ГДИС дает устойчивые и более точные оценки параметров нефтяного пласта по сравнению с оценками, полученными методом наилучшего совмещения. Из таблицы видно, что для получения оценок параметров методом адаптивной идентификации

СПИСОК ЛИТЕРАТУРЫ

- Кульпин Л.Г., Мясников Ю.А. Гидродинамические методы исследований нефтегазовых пластов. – М.: Недра, 1974. –200 с.
- Шагиев Р.Г. Исследование скважин по КВД. М.: Наука, 1998, 304 с.
- 3. Сергеев П.В., Сергеев В.Л. Идентификация гидродинамических параметров скважин на неустановившихся режимах

с заданной по критерию (3) точностью (eps=0,01), достаточно 50 ч, что позволяет в два раза сократить время исследований по сравнению с технологией обработки данных, реализованной в программе «PanSystem».

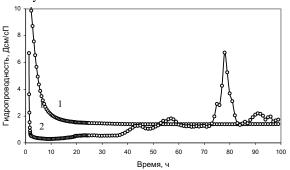
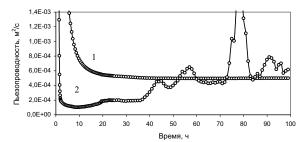



Рис. 2. Оценки гидропроводности. Метод: 1) АИ; 2) НС

Рис. 3. Оценки пьезопроводности. Метод: 1) АИ; 2) НС

Выводь

Предложен метод адаптивной идентификации нефтяных пластов в процессе гидродинамических исследований скважин с учетом априорной информации.

Метод заключается в последовательном, по мере получения исходных данных, вычислении вектора оценок параметров моделей нефтяных пластов, с анализом точности полученных приближений и последующем принятии решения о прекрашении исследований.

Показано, что использование метода адаптивной идентификации при интерпретации нестационарных гидродинамических исследований скважин на неустановившихся режимах фильтрации по кривой восстановления давления дает возможность повысить точность оценок фильтрационных параметров и энергетического состояния однородно пористых нефтяных пластов, сокращает прости скважин и потери добычи нефти.

- фильтрации с учетом априорной информации // Известия Томского политехнического университета. 2006. Т. 309. N_2 5. С. 156—161.
- Сергеев В.Л. Интегрированные системы идентификации. Томск: Изд-во НТЛ, 2004. – 240 с.

Поступила 04.05.2010 г.