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Abstract. In the paper the authors provide the results of experimental study of the effect 
caused by introduction of nanostructured fibres of aluminium oxyhydroxide into the surface 
layer of austenitic steel upon its microconstituents. The authors show that, due to introduction 
of given fibres dendrite size is reduced and equilibrium structure is formed. 

1. Introduction 
Under various methods of metal surface layer formation the crystalline structure of the given layer 
influenced by the conditions of liquid-solid transition is one of the factors determining the quality and 
the properties of this layer [1]. 

It is known that the process of nucleation can be spontaneous and induced [2]. In the build-up 
surface layer induced crystallization usually occurs at the fusion boundary where high-melting phases 
and microconstituents of the base metal may become nucleation centers [1]. In practice high-melting 
particles are deliberately introduced into the molten metal to increase the amount of induced 
nucleation centers which results in refinement of grains as the metal solidifies [1, 2]. 

Currently there are several promising ways used to modify surface layers with powders to obtain 
brand new properties of the surface: plasma, laser, ultrasonic, treatment with electric arc. 

Electric arc was chosen as the means of surface activation as it is widely used in industry and 
allows introduction of nanodisperse particles after only slight modification of standard equipment. 

The electric arc can be applied in three different ways depending on the place and method of 
application: when remelting the surface, when building-up the surface and for high-temperature 
treatment of the surface with application of consumable electrode [3, 4, 5]. 

The aim of the given research work was controlling the process of structure formation of the built-
up layer produced from  steel (chemical composition of the wire: 0.12% carbon, 18% chromium, 9% 
nickel; 1-15% titanium). 
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Relevance of the problem is determined by the fact that the structure directly conditions (specifies) 
the mechanical and service properties of the surface, i.e. insufficient service properties result in a 
larger amount of equipment failures and significant time and material losses caused by excessive 
repairing work [6, 7]. 

Thus, solution of the problem of properties improvement directly depends upon providing 
theoretical grounds and experimental verification of homogeneous fine-grained surface structure 
formation mechanism after introducing nanostructured powder modifiers into the surface layer. 

2. Methods of research 
To conduct the research built-up modified surface layers were produced. Two types of samples were 
used: №1 – modified with nanostructured aluminium oxyhydroxide fibers; №2 – without modification. 
For the purposes of the research the steel (chemical composition of the wire: 0.12% carbon, 18% 
chromium, 9% nickel; 1-15% titanium) samples were built-up by MIG-welding (welding conditions: 
current intensity 240-260 A; voltage 28-30 V) in argon atmosphere with electrode wire 12H18N9T 1.2 
mm in diameter. 

To study the microstructure sections were prepared. To prepare the sections the following methods 
were applied: mechanical grinding, mechanical polishing with diamond paste ASM 10/7 NVL and 
chemical etching (hydrochloric acid 75% HCl + concentrated nitric acid 25% HNO3). The 
microsections were studied with application of optical metallography method using Neophot-21 
microscope and digital camera Genius VileaCam for image recording. 

In the given work we applied aluminium oxyhydroxide fibres AlO(OH) (Figure 1) of the following 
size: diameter of 5 nanometer, length 150 nanometer; specific surface area 150 m2/g. For AlO(OH) 
fiber synthesis aluminium conductor electric explosive-produced powders were applied with specific 
surface area 7.5 m2/g. Aluminium powders were made from aluminium wire “AM” Ø 0,35 mm. Then 
nanostructured Al powder was subjected to thermal hydrolysis to produce Al oxyhydroxide nanofibers 
(AlO(OH)). Aluminium electro-explosive powder was placed into distilled water which had been 
previously heated up to 600С. The aluminium powder reacted with the water under the given 
temperature for 25-30 minutes. The color of the aqueous suspension changed from dark-grey to white. 
10 minutes after the suspension changed its color the container with the reaction mass was taken out of 
the constant-temperature bath. After cooling to the room temperature suspension was filtered, the 
deposit was washed with several portions of distilled water (3х300 ml) until its reaction was neutral 
(рН 5.5-6). Then the powders were dried under 110-1150С. Microphotographs of aluminium 
oxyhidroxide were presented in Figure 1 [8, 9, 10, 11]. 

 

 

Figure 1 – Transmission electron microscopy: photograph of aluminium oxyhydroxide fiber
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Aluminium electric explosive-produced powders on UDP-150 device have spherical form, the size 
of particles varies within (145-150) nanometer, specific surface area varies within (15-16) m2/g [8, 10, 
12]. 

 

Figure 2 - Transmission electron microscopy of electric explosive-produced powders: aluminium 

3. Results of the research and their discussion 
Examination of the sections that had not been etched showed that the surface layers built-up with 
application of two different methods do not have macro- and microdefects. 

The samples were studied according to the diagram presented in Figure 3. 
 

 

Figure 3 – Examination of the microstructure of the surface layer: A – upper underlayer, B – central 
underlayer, C – bottom underlayer, D – area of transition from the surface layer to the base one, E – 

base metal
 
Point D shows metal structure at the border of fusion and heat-affected zone (HAZ) (Fig. 4). 

Structure of heat-affected zone does not differ much from that of the base metal. The sample with 
aluminium oxide has smaller heat-affected zone which corresponds to less heat input and fast cooling. 
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a b

Figure 4 – Structure of the metal at the border between the fusion and heat-affected zone: a – sample 
№1 modified with nanostructured fibers of AlO(OH); b – sample №2 without the modifier 

 
 
The grain structure of the heat-affected zone transits to surface layer structure with pronounced 

dendrites. 
The first layer with polyhedral grain structure. In this underlayer polyhedral grains of austenite are 

observed together with dendrites. This underlayer is not well pronounced in sample №2 produced 
without the modifier (Fig. 5 b). Its thickness is 20% of the general thickness of surface layer. 

The “grain” underlayer is better pronounced in sample № 1 modified with nanostructured fibers of 
aluminium oxyhydroxide (Fig. 5 a). Here the polyhedral morphology grains can be well seen as they 
alternate with nonoriented dendrites. The thickness of the considered underlayer is over 30% of the 
general thickness of the surface layer. The specific feature of the given underlayer is that the grains 
may contain short and strongly ramified dendrites. 
 

a b 
Figure 5 – Microstructure of the underlayer of polyhedral grains: a – sample №1 modified with 

nanostructured fibers  of AlO(OH); b – sample №2 without the modifier 
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The microstructure of the next underlayer is characterized by relatively short, smaller, strongly 
ramified nonoriented dendrites. In sample №1 modified with nanostructured fibers of aluminium 
oxyhydroxide the given underlayer is more pronounced (Fig. 6 a). 

The dendrites in the given layer are relatively small as their axes do not coincide to the heat flow 
direction and they stop growing. 

Thickness of the given underlayer in sample № 1 modified with nanostructured fibers of 
aluminium oxyhydroxide is 34% of general one. The same underlayer in sample № 2 without the 
modifier is less pronounced. In sample № 2 without the modifier relatively short strongly ramified 
nonoriented dendrites form a continuous pattern (Fig. 6, b) and in sample № 1 modified with 
nanostructured fibers of aluminium oxyhydroxide we can observe areas of free surface where, at the 
same time, grain boundaries can be seen. Thickness of weekly oriented dendrites layer in sample № 2 
is 30% of general surface. 
 

a b 

Figure 6 – The microstructure of the underlayer of nonoriented dendrites: 
a – sample № 1 modified with nanostructured fibers of AlO(OH); 

b – sample № 2 without the modifier
 
The microstructure of the following underlayer is made up of oriented long dendrites (Fig. 7 a, b) 
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a b 

Figure 7 – The microstructure of the underlayer of oriented dendrites: a – sample №  1 modified with 
nanostructured fibers of ALO(OH); b – sample № 2 without the modifier 

 
Their orientation axis is normal towards the fusion border and is oriented along thermal current 

direction from the surface layer to the base metal. Strongly ramified thick dendrites are observed in 
sample № 2 without modifier (Fig. 7 b). Thickness of dendrites is 1.5-2 micrometer and their width 
(distance between the ends of opposite branches) is 20-25 micrometer. Thickness of dendrites in 
sample № 1 modified with nanostructured fibers of aluminium oxyhydroxide 0.8-1 micrometer and 
their width (distance between the ends of opposite branches) is 7-10 micrometer. 

Orderly orientation of long dendrite axes is broken right before the fusion border and one more 
underlayer of weakly oriented dendrites is formed (Fig. 8). 
 

a b 

Figure 8 – Microstructure of the underlayer of weakly oriented dendrites: 
A – sample № 1 modified with nanostructured fibers of AlO(OH); 

B – sample № 2 without the modifier
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The given underlayer is weakest pronounced in sample № 2 № without the modifier (Fig. 8 b). 
Sample № 1 modified with nanostructured fibers of aluminium oxyhydroxide (Fig. 8 a) the border 
between oriented and nonoriented dendrites is about 25 micrometer thick. 

The microstructure of the underlayer can be estimated as intermediate between areas A and B. In 
sample № 1 modified with nanostructured fibres of aluminium oxyhydroxide a clearly pronounced 
“grain” layer is observed again (Fig. 9 a). 
 

a b 
Figure 9 – Microstructure of the underlayer of nonoriented dendrites: 

A – sample № 1 modified with nanostructured fibers of AlO(OH); 
B – sample № 2 without the modifier

The situation in sample № 2 without the modifier is different (Fig. ( b) as the structure of the 
underlayer is closest to the microstructure in B in terms of morphology. Here we mainly observe 
chaotically situated nonoriented dendrites with insignificant amount of polyhedral morphology grains. 
In sample № 1 modified with nanostructured fibres of aluminium oxyhydroxide the underlayer of 
grain structure was ≈ 4 mm and in sample № 2without the modifier the layer of nonoriented dendrites 
was ≈ 3 mm. 

All studied samples are rather perfect both in terms of their structure and quality of the surface 
layer. Application of nanostructured fibers of aluminium oxyhydroxide allows regulating the structure 
of the surface layer. It was established that the surface layer has stratified structure determined by 
changing the heat removal conditions from the surface inside the molten pool. Heat removal is weak 
near the free surface that is why crystallizion results in forming polyhedral grain, dendrites do not 
have time to get formed. Most clearly this process is formed in the sample modified with 
nanostructured fibers of aluminium oxyhydroxide. In the rest part of surface layer typical dendrite 
crystallization took place. Approximately half of surface layer volume is taken by oriented dendrites. 
In the sample modified with nanostructured fibers of aluminium oxyhydroxide it is less that a half and 
in the sample produced without the modifier it exceeds half of surface layer volume. There is also the 
underlayer of nonoriented dendrites. This underlayer is especially wide in the sample modified with 
nanostructured fibers of aluminium oxyhydroxide. According to generally accepted view the more 
dendrite structure reveals itself, the larger are dendrites the worse are the service characteristics of the 
given layer [13, 14, 15]. From this point of view the surface layer produced without the modifier is 
worse than that of the sample modified with nanostructured fibers of aluminium oxyhydroxide. The 
microstructure of the surface layer modified with nanostructured fibres of aluminium oxyhydroxide is 
fine-grained and homogenious. 
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4. Conclusion 
1. It has been established that application of nanostructured powders allows controlling the 

microconstituents of the surface layer. 
2. Most clearly the layer of polyhedral grains is observed in the sample modified with 

nanostructured fibres of AlO(OH). The layer of oriented dendrites in the sample modified with 
nanostructured fibres of AlO(OH) occupies less than half of the built-up surface layer in terms of 
thickness. The layer of nonoriented dendrites is the widest in the sample modified with nanostructured 
fibres of AlO(OH). 

3. In terms of dendrite size more equilibrium structure is produced when modifying the surface 
layer with nanostructured fibres of AlO(OH). 
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