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Abstract. The article is devoted to construction piecewise constant functions for modelling 
periodic signal. The aim of the paper is to suggest a way to avoid discontinuity at points where 
waveform values are obtained. One solution is to introduce shifted step function whose middle 
points within its partial intervals coincide with points of observation. This means that large 
oscillations of Fourier partial sums move to new jump discontinuities where waveform values 
are not obtained. Furthermore, any step function chosen to model periodic continuous 
waveform determines a way to calculate Fourier coefficients. In this case, the technique is 
certainly a weighted rectangular quadrature rule. Here, the weight is either unit or 
trigonometric. Another effect of the solution consists in following. The shifted function leads 
to application midpoint quadrature rules for computing Fourier coefficients. As a result the 
formula for zero coefficient transforms into trapezoid rule. In the same time, the formulas for 
other coefficients remain of rectangular type. 

1.  Introduction 
Fourier series is applied to expand function that describes a waveform of periodic signal. As soon as 
the function is represented with its values obtained at discrete points, we have to substitute it with 
another function. The process of discretization of continuous wave is known as a time sampling. The 
new function is usually a step one. Its values in each sampling interval are equal to the values at the 
left limit of the interval. Trigonometric polynomial as a partial sum of series is a tool for modelling 
initial waveform [1], [2], [3]. One problem concerning truncated Fourier series consists in increasing 
amplitude of oscillations at jump discontinuities. The problem is known as the Gibbs phenomenon. 
There are various points of view to discuss the issue and resolve it [4], [5], [6], [7]. In the paper we 
consider continuity and discontinuity in points where data are obtained. To avoid the maximum of 
amplitude at the points of observation we suggest to shift the step function. As a result, the function 
becomes continuous at these points. In any case, when step function is chosen for sampling, an 
algorithm of calculation of Fourier coefficients appears as a certain quadrature rule. Suggested shift of 
step function leads to distinctions between used quadrature rules. As previous works of one of the 
authors are devoted to numerical integration and its error estimation [8], [9], we emphasize 
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computational aspect of the issue. According to stated, in the article, we consider quadrature rules of 
order 0 and 1.  

This paper is organized as follows.  
Firstly, we set initial conditions for the two models. This way, we construct two piecewise constant 

functions matching the two models. Also we consider formulas for computation Fourier coefficients 
concerning the two cases. 

Secondly, we consider weighted quadrature rules of low algebraic order. At first, we give the rules, 
that are accurate on all constants, then we perform rules, that are accurate on all linear functions. At 
the same time, we consider elementary and composite weighted quadrature rules.  

Lastly, we show that each formula of Fourier coefficient matches certain quadrature rule. In 
addition, we discuss the order of approximation. 

2.  Two models for waveform 
In this section, we introduce two step functions. One of them contains points of observed values as 
jump discontinuities. Another contains points of observed values as points of its continuity. 

To begin with, we set the function of signal waveform. Suppose )(tf   is an unknown function 

which describes a periodic signal waveform, and lT 2  is its period. Denote by ],[ ba  the 

fundamental period of )(tf  , where lab 2 . 

Further, we describe general features of approximating function as a step function. Suppose )(tf  is 

a step function which approximates )(tf  . Let t be an argument that presents a time variable ( 0t ), 

and let kt  be the points where observed values of )(tf   are obtained. Denote by N the number of 

sampling intervals, therefore the number of points of observation is N + 1. By ky  denote the observed 

values: )( kk tfy  , Nk ,,0 . Let kt  be equidistant: htt kk 1 , 1,,0  Nk  , so khatk  , 

Nk ,,0 . In particular, at 0 , btN  .  

We give more details of setting step functions in subsections 2.1 and 2.2 in order to specific cases. 

2.1.  Top-left corner model 
In this subsection, we introduce model with piecewise constant function, where the points of observed 
values are jump discontinuities. 

Suppose kytf )( ,    hkakhattt kk )1(,, 1   , 1,,0  Nk  . Then Fourier coefficients for 

the step function are 
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Integrating right members of equation (2.1) and equation (2.2) by t, we obtain 
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In this case, sampling interval coincides with interval of integration. The step function is discontinuous 
at points kt  and continuous at other points of the interval. 

2.2.  Midpoint model  
In this subsection, we consider a model with a piecewise constant function, where the points of 
observed values are points of continuity. We shift the function introduced in the subsection 2.1 on 
half-step leftwards. This yields that length of the very left and the very right intervals decreases on the 
half. Thus the points of observed values turn out to be the middle points of interval of continuity. 

Suppose  
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According to definition, Fourier coefficients for this function are 
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Then, integrating right members of equation (2.5) and equation (2.6) by t, we have 
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In this case the interval of integration is shifted left towards the sampling interval. The step function is 
continuous at points kt . 

3.  Quadrature rules of low order 
In this section, we consider quadrature rules based on interpolating polynomials of degree 0 and 1. We 
assume that an integrand is given by tabulating its arguments and values. In this case tabulated 
arguments match the nodes of interpolation.  

Moreover, we consider so called weighted quadrature rules which contain given tabulated function 
as a factor within integrand. The integrand as a product consists of the given function and some 
another function called a weight one. In general, the weight function is arbitrary, known, and defined 
in interval of integration. In certain case, the weight function is given by specific formula.  
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Each subsection in the section we begin with general form of weighted quadrature rule. Then we 
give examples with unit and trigonometric weight. This concerns either constant or linear functions. 

3.1.  Elementary weighted quadrature rules 
To begin with, we define the general weighted quadrature rule. As soon as quadrature sum is a linear 
combination of integrand values, its coefficients are called weights. We should tell the difference 
between the ‘weight function’ and the ‘weights’. The weight function is factor within integrand, and 
weights are numerical coefficients in quadrature sum. Denote by M  a number of the very right node 
such that M + 1 is a number of nodes, by kx  nodes, by kA  weights, and by )(xp  weight function of 

quadrature rule. Let )(xf  be a tabulated function, and  ba,  interval of integration. Then a weighted 

quadrature formula is defined as following 

.)(d)()(
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k kk
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a
xfAxxfxp  

Let m be a degree of interpolating polynomial. As known the degree depends on the number of 
nodes of interpolation as Mm  . Therefore, quadrature rule accurate on interpolating Lagrange 

polynomials )(xLm  of degree m is 
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In following subsubsections we give the quadrature rules with 1.0m . 

3.1.1.  Accuracy on constant functions. Now suppose that the quadrature rule is accurate on all 
constant functions  )()( 0 xLxf , where   is arbitrary real number. So, elementary on  ba,  

weighted quadrature rule accurate on polynomials of degree 0 is 
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There are three cases for 0x . The following methods are called as below depending on location of the 

node within interval of integration: if ax 0  the rule is called top-left corner method; if 
20

bax   the 

rule is called midpoint method; if bx 0  the rule is called top-right corner method. The cases are 

important for our purpose. 

3.1.2.  Accuracy on linear functions. Now we turn to the quadrature rule accurate on all linear 
functions   xxLxf )()( 1 , where   and   are arbitrary real numbers. Then  
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Nodes of the formula are set: ax 0 , bx 1 . As the rule is accurate on polynomials of degree 1 and 

less the following system should be solved to find weights kA  
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Thus, elementary on  ba,  weighted quadrature rule accurate on polynomials of degree 1 with weights 

0A  and 1A  is 
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To simplify expressions for 0A  and 1A  we assume that )(xP  is antiderivative for the weight 

function )(xp . Then integrating A and B we have 
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This is the quadrature rule with the weight in general form. If the weight is unit, the rule becomes 
classical trapezoid rule. 

3.2.  Composite weighted quadrature rules 
The interval of integration is sectioned on N equal subintervals. An elementary quadrature formula is 
used on each subinterval. The rule as a result of summing the parts is known as composite quadrature 
rule. We begin with introducing general forms of lower order rules. 

Suppose 
N

abh  . Then, applying the rule represented in equation (3.1) to each subinterval, and 

summing integrals over all subintervals, taking in account we have  
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Weights in equation (3.4) are     khaPhkaPA k  10 , 1,,0  Nk  . Double index in kA0  

means that weight 0A  from equation (3.1) is applied to subinterval whose left limit is numbered by k. 

Thus, equation (3.4) represents quadrature formula accurate on constant functions. 
Furthermore, applying equation (3.2) with specifics (3.3) to subinterval and summing, we have  
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Weights in equation (3.5) are 
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Expression for weights kB  in equation (3.6) is true for all 1,,1  Nk  . Thus, equation (3.6) 

represents quadrature formula accurate on linear functions.  

3.2.1.  Unit weight. Now we turn to specific weight functions. We begin with unit weight function. Let 

  1xp , then   xxP  , and  
2
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xxP  . The expressions are called unit weight parameters. 

Substituting weights in equation (3.4) by the parameters, we have classical rectangular rule with 
hA k 0 , 1,,0  Nk   
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In other words, this is a composite unit weighted quadrature formula exact on constant functions. 
Further, substituting weights in equations (3.5) and (3.6) by unit weight parameters we have classical 

trapezoid rule with 20
h

NBB  , and hBk  , 1,,0  Nk   
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Thus we have two composite quadrature rules with unite weight. 

3.2.2.  Cosine weigh. We continue with trigonometric weight function. Now we turn to cosine weight. 
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Expression for weights kB  in equation (3.12) is true for all 1,,1  Nk  . Thus we have two 

composite quadrature rules with cosine weight. 
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(3.4) by this, we have 

 

 
 
 

.

)1(

d)(sin
1

0 20


























N

k
h

k

b

a

hkaf

khaf

khaf

Axxxf  (3.13) 

Weights in equation (3.13) are      hkakhaA k 1coscos1
0  


, 1,,0  Nk  . Further, 

substituting weights in equations (3.5) and (3.6) by sine weight parameters, we have  

      .d)(sin
1

10 bfBkhafBafBxxxf N

N

k k

b

a
 




  (3.14) 

Weights in equation (3.14) are 
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         ,sinsincos,cossinsin 22
1111

0 hbbhbBhaahaB
hNh

 


 

          hkakhahkahkaB
hk 1sinsin21sin1cos 2

11  


  (3.15) 

  .1cos1 hka     

Expression for weights kB  in equation (3.15) is true for all 1,,1  Nk  .Thus we have two 

composite quadrature rules with sine weight. 

4.  Fourier coefficients  
In this section, we compare formulas for Fourier coefficients of piecewise constant function and 
quadrature rules of lower orders. 

4.1.  Case of discontinuity 

Let us remember that )( kk tfy  , Nk ,,0 . Comparing (2.3) and (3.7), we have 

   ,d)(
11 2 *1

0

*
0 ttf

l
khafh

l
a

la

a

N

k 



  (4.1) 

Here 
l
n  . Thus, computing formula for zero Fourier coefficient matches composite unit-weighted 

quadrature rectangular rule for tabulated function )(* tf  in  laa 2,  . Comparing (2.4) and (3.10) 

(3.13), we have 

  .d)(
sin

cos1
))1((

cos
)(

cos

)(
sin

))1((
sin1 2 *1

0

* ttf

l

nt
l

nt

l
l

hkan

l

khan
l

khan

l

hkan

khaf
n

l

lb

a la

a

N

k
n

n


































































 (4.2) 

Thus, computing formulas for nth Fourier coefficients match composite cosine- and sine-weighted 

quadrature rules accurate on constants for tabulated function )(* tf  in  laa 2,  . 

4.1.1.  Case of continuity. Comparing (2.7) and (3.8), we have 

 
     

.d)(
1

22

1 2 *
*

1

1

*
*

0 ttf
l

bf
khaf

af
h

l
a

la

a

N

k 












  (4.3) 

Thus, computing formula for zero Fourier coefficient matches composite unit-weighted quadrature 

trapezoid rule for tabulated function )(* tf  in  laa 2,  . In other words, in comparison with the top-

left corner model the midpoint model provides computation with quadrature rule of higher order. 
Looking at (2.8) and (3.8), we see that  

 

   

 

 




































































l

nb

l

hNan
l

hNan

l

nb

bf

l

an

l

na
l

na

l

an

af
n

l

lb

a
h

h

h

h

n

n










cos

)1(
cos

)1(
sinsin

coscos

sinsin
)(

1

2

2

*

2

2

*  

 

   

    .

cos
)1(

cos

)1(
sinsin

1

1
22

22

*











































N

k hh

hh

l

khan

l

hkan
l

hkan

l

khan

khaf




 (4.4) 
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Comparing, we see that, although expressions have similar structure, weight coefficients do not 
provide higher order of quadrature rule. So, we have to write 

      bfBkhafBafB
lb

a
N

N

k k
n

n 













1

10

1
 

.d)(
sin

cos
d)(

sin

cos
d)(

sin

cos
1

2

*2

2

*2 *





































































  






ttf

l

nt
l

nt

ttf

l

nt
l

nt

ttf

l

nt
l

nt

l

b

h
b

h
b

h
a

h
a

a 











 (4.5) 

Expression in square brackets before approximate equality sign means following. The first part is an 
elementary top-left corner quadrature rectangular term, the middle part is a composite midpoint 
quadrature rectangular sum, and the last part is an elementary top-right corner term. Expression in 
square brackets after approximate equality sign matches trigonometric-weighted definite integrals of 
tabulated waveform function. We see that order of quadrature rule remains the same in this case. 

5.  Conclusion 
Taking the set of tabulated function values as an initial data for calculating Fourier coefficients, we 
have a task to compute approximately some definite integrals. The way to complete the task is use of 
appropriate quadrature rules. If the modelling function is a piecewise constant, the rules appear to be 
composite of rectangular or trapezoid weighted type. 
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