
Simulation of Tasks Distribution in Horizontally Scalable
Management System

D Kustov1, A Sherstneva2, I Botygin3

1 E-learning Institute, National Research Tomsk Polytechnic University, Lenin
Avenue, 30, Tomsk, 634050, Russia
2Department of Higher Mathematics, Institute of Physics and Technology, National
Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk, 634050, Russia
3Department of Computer-Aided Designed System, Institute of Cybernetics, National
Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk, 634050, Russia

Abstract. This paper presents an imitational model of the task distribution system for the
components of territorially-distributed automated management system with a dynamically
changing topology. Each resource of the distributed automated management system is
represented with an agent, which allows to set behavior of every resource in the best possible
way and ensure their interaction. The agent work load imitation was done via service query
imitation formed in a system dynamics style using a stream diagram. The query generation
took place in the abstract-represented center – afterwards, they were sent to the drive to be
distributed to management system resources according to a ranking table.

1. Introduction
Currently, there have been significant changes in automated systems infrastructure for various
complicated organization-technical complexes. Constant hardware modernization, production number
increase and cost reduction are not the only reasons behind it. The difficulty of data processing itself
has increased (especially in scientific research applications), while applied problems are solved in a
distributed manner.

The amount of stored and processed data is yet another factor that actively influences the research
and development of the new information-calculation structures. The modern management systems are
often using a territorially distributed structure, formed of tens of thousands computers under the
concepts of meta-computing and grid-technologies. Sketchily, such structure includes computing
nodes functioning as calculators and data storages, communication network, middleware management
software multi-layered architecture, various targeted domain-functional modules and systems. While I
do not claim it as an in-depth description, the main features of such infrastructures are their large scale
defined by the territorial distribution and decentralized management due to non-deterministic process
management type.

Even those features listed allow to conclude that it’s difficult, if not impossible, to use distributed
automated management systems for strict formal mathematical methods.

Such circumstance largely defines the special role of the imitational modeling during the design of
distributed automated management systems (DAMS) [1]. Only an imitational model allows to
adequately represent DAMS primary components, their interaction and the dynamically changing
system condition.

VII International Scientific Practical Conference "Innovative Technologies in Engineering" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 142 (2016) 012037 doi:10.1088/1757-899X/142/1/012037

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

Therefore, it is possible to replay all the DAMS functioning process over time, accounting for its
designed logic structure, various management factors, random events and limitations. Let’s point out
the prospect of using imitational models for integration with decision support systems. In this case, it
is possible to search for optimal variants of distributed automated management system at every step of
development.

Various concepts, technologies and implementation methods are used to solve technological and
methodological issues of DAMS development, for planning and implementing the rational use of its
resources [2]. One of the approaches that provides the necessary DAMS functioning efficiency, is,
definitely, load balancing of its software-hardware components. The solution for this problem is
targeted towards providing the necessary technological interaction between integral components in
DAMS functioning process. The load balancing (equalization) ensures optimized calculations for
distributed architecture of informational and computational resources of complex systems, and
increases their reliability as well.

2. Simulation model of load balancing
The current work researches the load balancing algorithm [3] developed by authors. The testing was
done in a model experiment imitating the distributed automated management system functioning with
a more than 500 interacting components. Regarding the model itself, DAMS was represented as a
generalized mass-service system with a multiple channels, service errors, non-homogenous service
query streams, with a multiphase service query processing, unlimited queues, open-type system with
limited reliability. All the DAMS hardware-technical and software-informational infrastructure
components are acting as the generic model objects.

The imitational model development uses universal programming languages (C, C++, C#, Java,
Fortran etc.), specialized languages (GPSS/H, GPSS World, SIMSCRIPT, SIMPLEX3,GASP,
SIMULA, SLAM etc.) [4-15], specialized modeling environments (MicroSaint, iGrafx Process,
SIMUL8, VisSim, Extend, Arena, AnyLogic, Enterprise Dynamics etc.) [16-22]. Using the universal
programming languages most certainly allows to receive the models most adequately resembling the
real objects. Specialized modeling environments, however, allow to significantly reduce the model
development time and easily modify them if necessary.

As the modeling environment, the authors used the domestic object-oriented imitational modeling
environment AnyLogic [23, 24]. The combine approach, including agent modeling and system
dynamics, was used as a modeling method. The system dynamics was used for distributed system
components abstraction, and agent model was employed to adequately represent the functional
software-hardware components. In other words, for the studied problem, every distributed automated
management system component was represented as an agent, which is the best way to set a behavior
for each resource, to provide a proper way for their interaction.

The resource (agent) load imitation was modeled via service query generation formed with the
system dynamics style using a stream diagram to create a determined and alternative operations
passing algorithm. The query generation is done via abstract-view center; then, queries are delivered to
the drive (distributor) that distributes queries to DAMS resources. The query distribution is executed
according to the following principle:

Step 1. If any service queries remain in the drive, the execution priority is given to the resources
that aren’t processing any queries at the moment, i.e. are currently free.

Step 2. If there are no free resources at the moment, the busyness coefficient of every node is
calculated L = P*(Q+1), where P is resource performance, Q the number of queries in queue for this
resource. The query is sent to the resource with the lowest busyness coefficient. Specifically, it is sent
to queue. Afterwards, the busyness coefficient for this resource is recalculated accordingly.

Step 3. If the query has finished being processed, it is deleted.
For this model to resemble a real system more closely, the following randomly generated events

have been included:
 The possibility of DAMS resource refusing to accept query;

VII International Scientific Practical Conference "Innovative Technologies in Engineering" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 142 (2016) 012037 doi:10.1088/1757-899X/142/1/012037

2

 The possibility of resource failure at any moment of time;
 The possibility of resending processed request to another DAMS resource for its further

processing.
The AnyLogic Statechart class object were chosen as the primary blocks of the imitational model.

Those objects can determine a state diagram that describes system functioning as a set of states with
different readiness coefficients and state transitions. Additionally, every transition has a percentage
rate assigned statically or dynamically calculated during modeling. Every resource used one of the
following states:

 Resource initial state – «FreeState» (DAMS resource is ready to receive service queries);
 «BusyState» – DAMS resource is busy processing the incoming queries;
 «BreakState» – DAMS resource is not available (break/failure).

 «FreeState» is pretty simple and always relates to an initial state for any distributed automated
management system resource. In such condition DAMS resource is always ready for incoming
queries.

After receiving a request, resource enters the «busyState» and starts processing. The processing
duration can be calculated as a query processing time multiplied by resource components performance.
By default, the query processing time is equal to a single unit of modeling time. DAMS resource
performance is determined as generalized characteristics performance for every component that
belongs to this resource. Resource performance is correlated by its load and can be defined by
dimensionless coefficient between 0 and 1. The processing duration may vary from 1 up to 10
modeling time units. After query processing is finished, there is a chance to redirect query to another
random system resource (the probability is 0.05 by default). Otherwise, the query is deemed as
processed. The processed query counter increases by 1, resource enters «freeState».

The «breakState» is necessary for modeling breaks/failures of distributed automated management
system. The chance to enter break/failure state is defaulted to 0.1 and calculated for every unit of
modeling time. Entering this state will return the query in process to the query pool. The duration of
break/failure state varies between 1 and 100 modeling time units. After break/failure state expires, the
resource enters the initial «freeState».

The following parameters were chosen as DAMC imitational model input data:
 The total number of DAMC resources (agents).
 Service query generation intensity.
 The time required to process a single service query.
 The resource break/failure rate, defined by Bernoulli distribution.
 The resource break/failure duration, determined as a random value within minimum and

maximum boundaries.
 The chance to resend a service query from one resource to another.

All of the default data above can be set for imitational modeling with model interface. The work
end condition was time limit. The experiment used time limit of 200 modeling time units, which is
sufficient to receive a complete work load data for each resource and system as a whole.

There was a series of experiments with different input data values. The varying parameters were:
query generation intensity and system resource number. The query stream intensity varied from 1 to
150 per modeling time unit. The number of DAMC resources was determined by the following array a
= {5, 10, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 500}.

As a result of DAMC imitational model work, the following numerical criteria were chosen for
estimation:

 The total number of queries processed by DAMC.
 The total number of DAMC breaks/failures.
 The total DAMC load coefficient.
 The performance of every DAMC resource.
 The number of processed queries for each DAMC resource.

VII International Scientific Practical Conference "Innovative Technologies in Engineering" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 142 (2016) 012037 doi:10.1088/1757-899X/142/1/012037

3

 The number of failures for each DAMC resource.
 The load coefficient for each DAMC resource per unit of modeling time.
 The number of queries in queue for every DAMC resource per unit of modeling time.

All the received data was recorded in a structured manner in an external file. The imitational
experiments have shown that the researched load balancing algorithm allows to determine the optimal
amount of queries per unit of time to equally load all DAMC resources for any component
infrastructure (up to 500 agents), component load or query routing. Moreover, after the received data
analysis, the DAMC functioning quality can be estimated.

It is based upon such general information-communicational environment parameters as flow
coefficient, average query processing time, average query processing delay, failure rate etc. The
recommendations for increasing DAMC resilience have been created, which allows to reduce time and
computation costs. Finally, the criteria in use allowed to get a complete statistic on distributed
automated management system model functioning.

References
[1] Devyatkov V.V. Metodologiya i tehnologiya imitatsionnyh issledovaniy slozhnyh sistem:

sovremennoe sostoyanie i perspektivy razvitiya. - M.: INFRA-M, 2013. - 448 p.
[2] Sherstnev V. S. , Sherstneva A. I. , Botygin I. A. , Kustov D. A. Distributed information system

for processing and storage of meteorological data // Key Engineering Materials . - 2016 -
Vol. 685. - p. 867-871.

[3] Botygin I.A., Tartakovsky V.A., Sherstneva A.I. Algoritm balansirovki nagruzki v
raspredelennyh sistemah upravleniya // Informatizatciya i sviaz. – 2015. – № 1. – P. 28-31.

[4] Jefferson D.R. Virtual Time / Jefferson D.R. // Assoc. Comput. Mach. Trans. Programming
Languages and Systems, 1985. – № 7. P. 404-425.

[5] Computer Simulation // Minuteman Software, available at http://www.minutemansoftware.com,
2015.

[6] GPSS World // Elina-Computer, available at http://elina-computer.ru/static/gpss-world.html,
2015.

[7] GPSS/H Software Products // Wolverine Software, available at
http://www.wolverinesoftware.com/GPSSHProducts.htm, 2015.

[8] SIMSCRIPT III // CACI Advanced Simulation Lab, available at
http://www.simscript.com/products/products.html, 2015.

[9] Jalote P. Fault Tolerance in Distributed Systems // P. Jalote. USA: Prentice Hall, New Jersey,
1994. – 448 p.

[10] What is Simplex3? // SOI-Software, available at
http://www.simplex3.net/Body/Introduction/English/indexAbstract.html, 2015.

[11] Philip J. Kiviat, A. Colker A General Activity Simulation Program. – RAND Corporation,
Document Number: P-2864, 1964. – 9 p.

[12] Sklenar J. Introduction to OOP in SIMULA, available at http://staff.um.edu.mt/jskl1/talk.html,
2015.

[13] Birtwistle, G.M., O.-J. Dahl, B. Myhrhaug and K. Nygaard: SIMULA Begin, AUERBACH
Publishers Inc, 1973.

[14] Pooley, R.J.: An Introduction to Programming in SIMULA, Oxford, Blackwell Scientific
Publications, 1987.

[15] Kirkerud, B.: Object-Oriented Programming with SIMULA, Addison-Wesley, 1989.
[16] About Micro Saint Sharp // Alion Science and Techology, available at

http://www.microsaintsharp.com, 2015.
[17] iGrafx Process 2015 // iGrafx, LLC, available at http://www.igrafx.com/products/process-

modeling-analysis/process, 2015.
[18] SIMUL8 // SIMUL8 Corporation, available at http://www.simul8.com, 2015.
[19] VisSim. A graphical language for simulation and model-based embedded development // Visual

VII International Scientific Practical Conference "Innovative Technologies in Engineering" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 142 (2016) 012037 doi:10.1088/1757-899X/142/1/012037

4

Solutions, available at http://www.vissim.com, 2015.
[20] Simulation with ExtendSim // Imagine That Inc., available at

http://www.extendsim.com/prods_overview.html, 2015.
[21] Arena // Arena Simulation Software, available at https://www.arenasimulation.com, 2015.
[22] Enterprise Dynamics // INCONTROL Simulation Solutions, available at

http://www.incontrolsim.com/en/enterprise-dynamics/enterprise-dynamics.html, 2015.
[23] AnyLogic // AnyLogic, available at http://www.anylogic.ru/overview, 2015.
[24] Kelton W., Law A. Simulation Modeling and Analysis. McGraw Hill Higher Education, 3rd

edition, 2000 – 784 p.

VII International Scientific Practical Conference "Innovative Technologies in Engineering" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 142 (2016) 012037 doi:10.1088/1757-899X/142/1/012037

5

