
Laser Treatment on the Coating Surface Having Been 
Performed by Means of Plasma Surfacing With Powder Made 
of M2 Steel* 

A A Khaidarova 1, S A Silantiev 2 

1,2Tomsk Polytechnic University, Lenina Str., 30 Bld., Tomsk, 634050 

 

E-mail: 1haydarova@tpu.ru; 2silantev-sergei@mail.ru 

Abstract. In this study researches were carried out about the impact of pulsed laser irradiation 
on the surface of M2 steel which had been surfaced beforehand on steel 20 by poweder-pasma 
surfacing technique.   The surface treatment was performed by the single point laser action and 
by successive imposition of overlapped impulses.  During the surfacing the average irradiation 
power was varied from 15.8 to 21.0 W. The impulse duration in all points was constant and it 
was 7 msec. In this study it was researched the influence of laser-beam power change on the 
depth of penetration, changes in the structure and microhardness of treated areas. 

Introduction 
There are different ways how to solve some issues connected with working surfaces of machinery 
parts and machines with high mechanical and tribotechnical characteristics, the following are: the 
coating application with overlaying or sputtering, the thermo treatment, the surface treatment with 
highly concentrated sources of energy such as: an electronic beam, concentrated arc plasma spray or 
laser. Special preferences are given to the laser as the means that allows you to change the structure of 
the metal surface layer at high speed and this means does not require special protection from the 
ambient air unless the treated material requires it. 

With the help of laser treatment researchers are able to solve such tasks as surface texturing and 
modification [1-3], the increase of wearing capacity, the hardness, the strength and the fatigue 
resistance of surface parts [1-14]. It is all possible due to the high thermal gradient which arises in the 
area of laser irradiation. It is possible to achieve austenitic-martensitic transformations in the smallish 
volume of material due to the rapid heating and cooling processes during the laser treatment thus 
changing and strengthening separately taken areas [7.8]. 

The choice of laser irradiation parameters especially influences the structural and characteristic 
change of the material to be treated. In works [4,9] it is shown that the essential factors affecting the 
depth of the laser penetration are the following: the wave length of an emitter, the average power, the 
energy and the radiation energy density and the laser speed under the continuous-wave irradiation. In 
recent years, the processes of structural changes of steel under the impact of short-term radiation 
treatment with laser pulses are being actively studied [1-4,7,9]. During the pulse treatment it is 
necessary to take into account such parameters as: the peak power density, duration and pulse 
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repetition rate. In the work [12] it is shown that the laser treatment in pulsed mode allows you to get 
greater action depth due to the higher peak power density than the treatment in the continuous-wave 
mode. Besides the use of pulsed laser treatment allows you to control the surface characteristics with 
its minimal geometry distortions. 

The most efficiency of laser treatment is achieved when it is applied to the steels, which are able to 
harden themselves and undergo austenitic-martensitic transformations [8]. In this regard, fast-cutting 
steels as M2, R18, R12 are of interest. In works [13,14] it was shown that coatings on the basis of such 
kind of steels which were made with electron-beam and plasma surfacing techniques are stable in the 
conditions of abrasive wear. It might be supposed that the additional treatment of such kind of 
coatings with laser pulses will considerably enlarge the field of their application by means of the 
surface texturing, which has proved itself in works [15,16]. 

Technical publications do not show enough information about the influence of the laser beam 
power on the structure and hardness formation of tool steels after laser treatment. That is why it is 
necessary to carry out a research on the influence of pulsed laser irradiation parameters on the 
penetration depth, structure and characteristics of fast-cutting steels like M2. 

Materials and research methods 
A pre-polished surface coating made of M2 steel with roughness of Ra 0.08 was treated with laser 
irradiation. The coating was treated beforehand with plasma powder surfacing technique at current 
strength of 200 A and surfacing speed of 0.17 cm/s. 

The laser welding machine HTF-50T with aluminum-yttrium solid-state laser (YAG: Nd3 +) was 
used as the radiation source. 

For the needs of the comparative analysis four single treated areas have been done and also it has 
been done one linear area which represents a number of impulse treatment points applied against each 
other with partial overlapping. Modes of surface treatment were remarkable for power pulses of 
rectangular shape (Table 1). The laser irradiation treatment was performed in the open air without 
protection for the surface coating against oxidation. 

 

Table 1. Mode parameters for a laser irradiation action on the structure and characteristics of surfaced 
layer made of M2 steel. 

Mode 
№ 

Peak power 
(qp), KW 

Average power 
(qA), W 

Pulse energy, J 
Pulse 

duration, ms 
Pulse repetition 

rate, Hz 

1 1.50 15.8 10.50 7 Single pulse 

2 2.00 21.0 14.00 7 Single pulse 

3 2.42 25.4 16.94 7 Single pulse 

4 4.05 42.5 28.35 7 Single pulse 

5 2.00 21.0 14.00 7 1.5 

The studies about treated metal were carried out in the surface layer and in the cross-section along 
the central axis of the track and points. The study of macro and microstructure was carried out by 
means of optical and electron metallography. Optical metallography was conducted with the help of a 
microscope OLYMPUS GX51 and an application module SIAMS 700 in the bright field mode and in 
the differential interference contrast. Electron microscopy was done with a scanning electron 
microscope Hitachi S-3400N, equipped with an attachment for elemental analysis EDS, WDS. 

The structure identification of the treated metal was accomplished by dipping the pre-polished 
surface into reagents with the following compositions: HNO3(ml):C2H5OH(ml)=4:100; 
HCl(ml):СuСl2∙Н2O(g):H2O(ml):C2H5OH(ml)=20:1:15:65. Metal holding time in the solutions 
ranged from 20 to 60 seconds. 
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Microhardness was measured with HVS-1000 device with 100 microns depth in each step at 5H 
load. 

Results and discussions 
Figure. 1 represents the microstructure of the single points surface, the microstructure was figured out 
with optical metallography only after the surface polishing and etching. All points have three 
distinctive areas: reflow zone (RZ) - the central part of the spot; hardened zone (HZ) - unevenly etched 
circle which is remarkable for the structural heterogeneity; heat-affected zone (HAZ) - bright circle 
which is ringed with the dark, well-etched circle. 

Thermocapillary and capillary phenomenon that occur in melting points as well as the martensitic 
transformations both result in the surface deformation due to the surface tension and due to the cracks 
formation in the center of the spot. At the same time, the greater the coefficient of penetration shape is 
(k=h/d), which increases along with power growth of laser irradiation, the larger deformations and 
cracks become (Figure. 1,d). 

 

Figure 1. The microstructure of the point surface which was 

achieved with average laser irradiation power: a – 15,8 W, b – 

21.0 W, c – 25,4 W, d – 42,5 W 

Figure 2. The graph of the spot 

irradiation diameter (a) and the 

penetration depth (b) by laser power 

growth 

The total length of the laser heating zones was accepted as the total depth of laser action zone, 
while structural and phase changes occurred in laser heating zone with respect to the original steel 
structure. The penetration depth increases along with the growth of power or pulse energy (Figure. 
2b), however, these changes are of irregular character. The heating depth is 100 ... 130 µm when an 
average power laser pulse is 15.8 ... 21.0 W. The further power increase up to 25.4 W leads to the step 
like increase of the penetration depth up to  230 µm with a simultaneous increase of the molten metal 
layer on the walls of a steam-gas channel, as a result it occurs the slowdown of penetration even when 
the power is increased up to 42.5 W. The Form of laser action points in the cross section is close to 
hemispherical. 
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Figure

The protection absence of the treated melt surface 

absorption from the ambient under the influence of the convection flows in a thin surface layer. This 

facilitates the metal oxidation on the whole surface of the points, and this is proved by a large amount 

of oxygen discovered with microroentgen spectral analysis (

Figure 4. Microroentgen spectral analysis carried 

out on the reflow zone

The hardened zone offers the austenitic

are situated along the grains boundaries (

which are in the initial state in the steel M2, carbides in the hardened zone are offered as dispersed 

formations which are situated closer to the reflow zone, and the rods which are situated closer to the 

heat-affected zone. At the same time the amplification of eutectic 

HAZ. It is observed a large number of dispersed precipitates with size of ~0.5 µm inside grains. 

Resting on the results of X-ray structural analysis carried out in works [17,18], it can be assumed that 

the precipitates present carbides which compositions include W, Mo, Cr, V and Fe.

Heat-affected zone is well etched in the reagent HNO3(

photomicrograph clearly shows coarse

the grain boarders. Fine-dispersed precipitates are not observed in the heat affected zone while they 

are typical for the hardened zone. The HAZ width does not depend on the laser beam power and it can 

range from 80 to 110 µm. 

Figure 3. Microstructures of reflow zone. 

The protection absence of the treated melt surface during the laser air reflow results in the gases 

absorption from the ambient under the influence of the convection flows in a thin surface layer. This 

facilitates the metal oxidation on the whole surface of the points, and this is proved by a large amount 

of oxygen discovered with microroentgen spectral analysis (Figure. 4). 

 

Microroentgen spectral analysis carried  

out on the reflow zone. 

Element Wt%

C 04.18

O 07.69

Mo 03.32

V 01.95

Cr 03.69

Fe 71.76

W 07.5

  

The hardened zone offers the austenitic-martensitic matrix with a grid of eutectic carbides which 

are situated along the grains boundaries (Figure. 5a). Unlike the lamellar structure of eutectic carbides, 

initial state in the steel M2, carbides in the hardened zone are offered as dispersed 

formations which are situated closer to the reflow zone, and the rods which are situated closer to the 

affected zone. At the same time the amplification of eutectic phases branching occurs close to the 

HAZ. It is observed a large number of dispersed precipitates with size of ~0.5 µm inside grains. 

ray structural analysis carried out in works [17,18], it can be assumed that 

present carbides which compositions include W, Mo, Cr, V and Fe.

affected zone is well etched in the reagent HNO3(ml):C2H5OH(ml)=4:100 (

photomicrograph clearly shows coarse-acicular martensitic structure with a grid of eutectic carb

dispersed precipitates are not observed in the heat affected zone while they 

are typical for the hardened zone. The HAZ width does not depend on the laser beam power and it can 

 

during the laser air reflow results in the gases 

absorption from the ambient under the influence of the convection flows in a thin surface layer. This 

facilitates the metal oxidation on the whole surface of the points, and this is proved by a large amount 

Wt% At% 

04.18 15.16 

07.69 20.93 

03.32 01.51 

01.95 01.66 

03.69 03.09 

71.76 55.87 

07.5 01.78 

 

martensitic matrix with a grid of eutectic carbides which 

. 5a). Unlike the lamellar structure of eutectic carbides, 

initial state in the steel M2, carbides in the hardened zone are offered as dispersed 

formations which are situated closer to the reflow zone, and the rods which are situated closer to the 

phases branching occurs close to the 

HAZ. It is observed a large number of dispersed precipitates with size of ~0.5 µm inside grains. 

ray structural analysis carried out in works [17,18], it can be assumed that 

present carbides which compositions include W, Mo, Cr, V and Fe. 

)=4:100 (Figure. 5,b.). The 

acicular martensitic structure with a grid of eutectic carbides at 

dispersed precipitates are not observed in the heat affected zone while they 

are typical for the hardened zone. The HAZ width does not depend on the laser beam power and it can 
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Figure 5. Microstructure of a hardened zone (a) and heat-affected zones (b). 

The metal structural changes after laser reflowing allows for a change in hardness in some areas of 

laser action. Distribution of microhardness across the reflow points was measured after the surface 

polishing when roughness reached Ra 0.08 µm. 

Heat-affected zone represents the most weakened area of the laser action points. The level of 

hardness in the HAZ decreases by 25 ... 30% in comparison with the hardness of the initial material 

which has not been treated (Figure. 6). This is due to the tempering of the martensitic boundary which 

is close the hardened zone, this process happens in a very short period of time in the case of the 

metastable structure heating [4]. 

 

Figure 6. The length 

wise distribution of 

microhardness over laser 

action points. 

It is observed an uneven distribution of microhardness due to the formation of structural 
heterogeneity in the central part of points and in the hardened zone, this is particularly evident during 
the laser beam treatment with the power from 15.8 to 25.4 W (Figure. 6, a-c). The average hardness of 
these zones is comparable with the hardness of M2 steel which is in its condition after surfacing 
(~790... 800HV). 
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When the laser power is increased up to 42.5 W, so the average level of the treated metal hardness 
is increased by 10 ... 15% mainly due to the widening of the hardened zone which contains a large 
amount of eutectic and secondary carbides (Figure. 6,d). Alignment around a heating spot is facilitated 
by the increase of the laser action power, along with the increase of the average level of the treated 
metal hardness. 

While the surface is being treated by overlapped laser points, it is necessary to consider the 
presence of narrow weakened areas under pulsed laser action on M2 steel. 

When the surface of M2 steel is treated by successive imposition of intersecting laser pulses, so it 
happens a uniform penetration of the initial metal to the depth of ~130 ... 140 µm, what corresponds to 
the penetration depth for a single pulse with power of 21.0 W (Figure. 7,a). 

 

 
Figure 6. The microstructure of the cross section (a) and the path surface (b) done by a series of laser 

irradiation pulses and the HAZ microstructure in cross section under the point P.5 (c). 
It is observed the cracks formation on the surface of central points (P.3 P.6 ... in Figure. 6,b), and 

also below them in the HAZ (Figure. 6c). 
It is formed a narrow heat-affected zone in areas where points are overlapped (Figure. 6. a,b). This 

area having been formed on the pre-reflowed metal area has a fine-acicular martensite structure 
(Figure. 6d). The hardness of this area is 20 ... 30% lower than the hardness of the reflow zone and the 
hardened zone (Figure. 7). In general, the average level of metal hardness that has been treated with a 
series of pulses is ~800HV and it is at the level of coating hardness that has been made of M2 steel 
immediately after surfacing. 

0 40 80
400

600

800

1000
HV

P.1 P.2 P.3 P.4 P.5 P.6 P.7 P.8 P.9 P.10 P.11

х  , m

Figure 7. The microhardness distribution in the surface layer of the laser path action which  

is directed from the first point to the last one. 
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Thus, thermal cycling which occurs when M2 steel is consecutively treated by pulse laser 

irradiation does not allow considerably change the hardness of the treated layer in comparison with the 

hardness of M2 steel after surfacing. 

Conclusion 
The increase of the average laser pulse power from 15.8 W up to 25.4 W results in the twofold depth 

increase of laser action on the M2 steel coating. Further increase in the average power up to 42.5 W 

facilitates the growth of the molten metal layer on the walls of the steam-gas channel, which leads to 

the decrease of penetration depth. 

The three zones formation under laser treatment facilitates the irregular distribution of 

microhardness on the surface of the treated material. It does not occur the considerable strengthening 

of the surface when M2 steel is treated by single laser pulses with power ranging from 15.8 to 25.4 W. 

The average hardness of the treated area with laser irradiation is within the limits of the M2 steel 

hardness after plasma surfacing. The hardness increase of the treated area is facilitated by laser 

irradiation power increase up to 42.5 W and this is 10 ... 15% higher in comparison with the hardness 

of M2 steel after surfacing. Mode with an average power of 42.5 W and pulse energy of 28.35 J is 

considered to be the best in respect to the structure formation, the hardness change and the laser action 

depth. 

The treatment of the steel surface with the help of successive imposition of laser irradiation in 

overlapped manner facilitates the initiation and development of cracks in the areas under the laser 

action, at the same time the structures that are being formed do not allow to increase the hardness of 

the M2 steel with the help of periodical weakening of the treated material in the HAZ while the points 

are overlapped. 

 

*Work performed under the project of the Russian science Foundation № 16 - 19 - 10010. 
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