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Abstract. The results of experimental research into dry sliding friction of Hadfield steel single 
crystals involving registration of acoustic emission are presented in the paper. The images of 
friction surfaces of Hadfield steel single crystals and wear grooves of the counterbody surface 
made after completion of three serial experiments conducted under similar conditions and 
friction regimes are given. The relation of the acoustic emission waveform envelope to the 
changing friction factor is revealed. Amplitude-frequency characteristics of acoustic emission 
signal frames are determined on the base of Fast Fourier Transform and Short Time Fourier 
Transform during the run-in stage of tribounits and in the process of stable friction. 

1.Introduction
There are chaotic and unsteady phenomena registered between two objects in the process of friction. 
A relative slip of objects in a tribounit results in intense interaction between micro-roughnesses of 
surfaces, coming in contact. Seizure, separation and shear of micro-roughness elements are typical for 
this interaction. Small dimensions of actual contact areas are the cause of a considerable growth of 
stresses and temperature on certain roughnesses peaks; furthering generation of intense deformation 
processes in the surface layer, and elastic strain waves in particular. Elastic strains are amongst the 
principal sources of acoustic signal generation [1]. The development of elastic variations in the 
process of sliding friction is connected with plastic shears and twinning, intergranular sliding in a 
polycrystalline object, phase transformations and fractures, involving micro-cracks and separation. In 
conditions of friction the surface layer of a metal is subject to changes, caused by the accumulation of 
defects, formation and further fracture of a defect structure layer, this sequence recurs then. As these 
phenomena occur, the elastic deformations are formed with a varying intensity, changing, therefore, 
the acoustic emission intensity as well [2]. 
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The detailed study, based on experimental testing, of all formation and fracture phases in the 
surface layer seems to be impossible, since the contact area of objects in a tribounit is inaccessible for 
direct observation. Hence, additional research procedures are required, capable of direct or indirect 
providing information on phenomena, occurring in a tribounit. One of these procedures is to register 
acoustic emission (AE) signals in the process of friction. Registration and analysis of AE signals is 
widely used to study strain and fracture in materials that are loaded statically and dynamically [1-2]. 
At the same time one should take into account the diverse spectrum of acoustic variations typical for 
the dynamic processes, such as friction. These phenomena include both processes related to the 
surface evolution under friction and variations of tribounit elements. The AE spectrum includes sound 
and ultrasound range frequencies, distinguished by random and periodic character, dependent on 
loading conditions and friction regimes [3]. A number of diverse phenomena with various frequency 
and intensity occur on the contact areas over the period of registering a single signal (frame) of 
acoustic emission [3]. 

The authors of papers [4-8] studied in details AE signals, arising in the process of friction. AE 
signals versus type (and quantity) of generating wear particles [4]; wear mechanism [5-7]; and the 
state of friction surface correlation dependence was determined [8]. However, despite the works 
mentioned above, additional experiments, reproducing various aspects of friction and material states in 
condition of frictional interaction are necessary because of diverse phenomena, occurring in the 
process of friction. One of the aspects in focus of researchers is strain hardening of metals and alloys. 
It is interesting to study as a typical example Hadfield steel, distinguished by the high level of strain 
hardening under static compression, tension, torsion, and impact test [9-16].  

The relation of AE signals to friction specifics of polycrystalline Hadfield steel has been already 
studied [3, 17-18]. The authors [17] have revealed the influence of AE signal parameters on friction 
behavior and wear. When forming the surface layer fiction factor is increased together with the 
growing median frequency of AE signal, which is conditional on origination of high-frequency 
components in the signal spectrum. The friction factor, median frequency and AE energy signals 
diminish as the surface layer fractures and wear particles are separated. On the base of frequency and 
time analysis [18] it is revealed that quasi-periodic bursts of AE intensity are interrelated with 
formation of wear particles. Since analysis and interpretation of AE signals generated in the process of 
friction are complex, there is a necessity to search for experimental procedures, reproducing certain 
material behavior in conditions of friction. One of these procedures is based on the use of single 
crystals, which makes it possible to control their strain behavior via selecting the crystal-lattice 
orientation and loading conditions.  

The aim of the work is to study how generation of AE signals is related to deformation processes in 
Hadfield steel single crystals, arising in the surface and subsurface layers under dry sliding friction.  

2. Methods of research
Single crystals are grown by Bridgman technique in helium atmosphere and homogenized in a noble 
gas for 24 hours at 1373 К. The specimens were cut by an electroerosion machine. As cutting out is 
completed, orientation of contraction axis in a single crystals is [10����	7�	1�]	 and that of friction axis 
is	[3�	4	2]. The specimen dimensions: height (L) – 10 mm; width (b) and thickness (a) – 1.3 mm. Cut 
out specimens are stored in helium atmosphere for an hour at 1050˚С and water-tempered to fix the 
austenite structure. The defect surface layer is removed via grinding. The hardness of a tempered 
single crystal is 180 HV. Sliding friction of single crystals is carried out by a tribotester TRIBOtechnik 
according to the scheme “pin – on – disk” (see Figure 1) at ambient temperature 25˚С. The normal 
load is 4 N (2.3 МPа, taking into account the friction surface area); sliding speed is 0.1 m/s. Each of 
three trials lasts 3 hours. A counterbody is a steel 40Х disk with hardened surface, the hardness of 
which is 36 HRC. The friction surface topography of Hadfield steel single crystals and wear grooves 
on the counterbody are studied by confocal laser scanning microscope LEXT OLS4100. The 
parameters of AE signals, generated in the process of sliding friction are analyzed by a registering 
module EYA-2 (ЭЯ-2) developed at Togliatti State University.  
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