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Abstract: Rolling friction between particles is to be set in problems of granular material 
mechanics alongside with sliding friction. A classical problem of material passive lateral 
pressure on the retaining wall is submitted as a case in point. 3D method of discrete elements 
was employed for numerical analysis. Material is a universe of spherical particles with 
specified size distribution. Viscose-elastic properties of the material and surface friction are 
included, when choosing contact forces. Particles' resistance to rolling relative to other 
particles and to the boundary is set into the model. Kinetic patterns of medium deformations 
are given. It has been proved that rolling friction can significantly affect magnitude and nature 
of passive lateral pressure on the retaining wall. 

1. Introduction 
It is known, that the mechanics of granular material is based on Coulomb's law: 

ktg nn   , (1) 

где σn, τn – respectively are normal and tangential stresses at limit state area, k – adherence, tgφ – 
internal friction coefficient (in fact, sliding friction only). While solving continuum mechanics 
problems, proceeding to invariants is to be done in equation (1), and on this basis various options of 
closed mathematical models are built [1-4]. Since the original equation (1) involves sliding friction 
only, corresponding models and numerous solutions are also based on sliding friction. It is known that 
while deformation of soils and granular materials (including some rocks), freedom degrees, associated 
with particles rotation are significant. Therefore, along with sliding friction, rolling friction should be 
involved. Within the framework of continuum mechanics, it significantly complicates models because 
of additional internal variables [5-9]. 

The purpose of this paper is to demonstrate the importance of rolling friction by means of the 
numerical method of discrete elements (DEM). As an example, we choose a retaining wall classical 
problem, which is used in studies of natural phenomena (landslides), and in design of engineering 
structures (road and rail embankments, quarries sides). Consider the following problem: let a rigid 
vertical wall to hold heavy loose ground. Evaluate the required pressure P, acting on the wall by the 
material if its displacement towards the ground (passive pressure case). 

In practice, the limit equilibrium theory is widely used for calculations of slope and retaining walls 
stability; according to this theory, wall's displacement forms sliding surfaces in the material, wherein 
displacement towards the material forms a sliding wedge. This is supported by numerous laboratory 
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experiments and field observations. Depending on a model, the sliding wedge is limited either by a 
plane or by a curved surface. Coulomb, Rankine, Sokolovsky’s models are conventional for 
calculations of retaining walls [1, 10 -12]. For example, according to Rankine, in absence of friction 
between ground and the retaining wall, horizontal pressure P is expressed by: 











242

1 22 
 tggHP ,     (2) 

where ρ is material density ; φ - internal friction angle; g - gravity acceleration; H - height of the 
filling; "+" corresponds to passive pressure, and "-" to active pressure. 
 A limitation of these approaches is that they do not consider a material stress history, preceding a 
limit state. On the other hand, need for limit state hypotheses is eliminated in continuum statements, 
based on the theories of elasticity and plasticity. However, there is a need for formulation of closed 
systems of equations, which have not been set up yet. Numerous experiments on various stress modes 
show formation of localized currents in discrete medium [13-15]. 

We suggest employing, as a research tool, of the method of discrete elements, which allows 
determining evolution of stress-strain state of loose medium both at a pre-limiting stress stage and at 
the stage of localized displacements formation. The advantage of this method is that it does not require 
either limiting state hypotheses or continuum equations. 

At present, method of discrete elements is widely used to solve problems of geo-mechanics [16–
19]. Its essence is that a real medium is replaced with a pack of discrete particles, among which 
particular interaction laws are postulated. Particles have free multi-dimensional parameters which are 
to be chosen. Under this method, engineering problems of large deformations and rotations are solved 
without further difficulties. In addition, localization displacements and physically nonlinear effects can 
be described without major complications, while data on the constitutive equation are not required. 
Thus, this method is a fundamental alternative to the classic methods based on traditional concepts of 
the continuum mechanics. 

 
2. Research method 
DEM represents discrete material as a universe of N spherical particles (discrete elements). Each i-th 
element has a radius ri and a set of physical properties: density, elastic and viscous moduli, friction, 
adherence, etc.  (i = 1, …, N). Single discrete element motion is both translation and rotation and is 
described by the following equations: 

 gfx i
j

ijii mm  , (3) 

  
j

ijrijiciiI )( ,Mfrθ . (4) 

Here the dots denote differentiation of time t; xi  - radius-vector of i-th particle’s gravity center; θi - 
its rotation relative to coordinate axes; mi - mass; Ii - moment of inertia; g  - gravity acceleration; ric - 
vector directed from the i-th particle center to the point of contact; contact force fi affects to i-particle 
with another j-particle (or border), (it depends on their overlapping  as well as on elastic and viscous 
moduli), its normal component is calculated according to Hertz law [20]; Mr,ij - resisting moment of 
particles (while particles interaction or along the wall). 

In (3) and (4) all elements and borders, being in contact with a current i-particle, are summed up. 
Since forms of discrete elements are supposed to be constant during the contact, deformation degree is 
described by magnitude of contacting particles overlapping. A special feature is a spherical shape of 
elements, which does not change during the entire numerical experiment. This imposes certain 
limitations on the scope of this method, since, in an actual situation, rolling resistance of particles, 
when they are in reciprocal contact or contact with a border, is conditioned by their shapes and 
deformations. To remove this limitation, you can either use particles of any form or create clusters, 
which are considered as separete elements. These methods require larger computational resources.   
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In this paper we use the method presented in [21-24]; we propose the model of rolling resistance as 
an adjunct to the contact interaction model; rolling resistance hinders relative particles’ mutual motion 
or their motion along the border. 

From the right side of the equation (4) the contact moment is represented as two summands. The first 

summand is the moment of direct contact or relative mutual sliding of particles. The second summand 

is the moment, hindering relative rotation of discrete elements: 

 
ijijijij
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 ,

, (5) 

where  i and  j - angular velocities of contacting particles; nij - unit vector lying on the straight line 
joining their centers; rij  - reduced radius: 1/rij = 1/ri + 1/rj.  
Dimensionless parameter ij  is rolling resistance coefficient (ij·rij - rolling friction coefficient of 
length dimension). If to draw an analogy with dry friction angle between two bodies, just depict that 
this ratio can be represented as ij = tg ij. 
Here  ij is the maximum angle of plane inclination at which particles will be in equilibrium due to 
rolling resistance (if no slipping). 

To examine the effect of a set parameter on kinematics of particle motion, let us perform the 
following numerical experiment. Suppose that radius sector of 0.01m rests on a horizontal plane in 
gravity field. Contact friction angle between the particle and the boundary is equal to 30.0°. Particle 
mass center's velocity v0 = 1.0 m/s and zero angular velocity are set at zero time parallel to the plane. 
If there are no rolling ( ij = 0) and viscous component of contact force, particle mass center's velocity 
will be equal to the initial (v(t) ≡ v0) at any time t; and the traveled distance will be a linear function of 
time:  s(t) = v0·t.  

If ij > 0 solution will differ. Fig. 1 shows results of numerical experiments for different values of 
ij.  

Higher magnitudes for ij were chosen to demonstrate the prominent effect of rolling friction. Fig. 
1 shows that the distance, traveled by the particle, is finite and diminishes with increasing of rolling 
resistance angle  ij. 

 

Fig. 1 Distance-time relationship (s is passed by a spherical particle with 0.01m radius) if 
rolling resistance angles ij are: 5.0 (●); 15.0 (■); 25.0 (▲) 

 

Thus, if there is data on laws of motion and particles contact interaction (equation (3) - (5)) as well 
as initial and boundary conditions, you can set up and solve equations and determine environment's 
stress-strain state evolution. 
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3.  Numerical DEM simulation 
Based on the model considered above, a software has been developed for numerical analysis of 
various modes of motion of discrete material consisting of separate spherical particles [25, 26]. 

 Let us consider the following three-dimensional problem. Suppose that Ω volume is set in Oxyz 
space (Ω is a parallelepiped container for loose material, constrained with planes (walls) oriented 
along coordinate axes); the upper boundary is non-strained (Fig. 2). Length l is equal to 0.2 m, width = 
0.01 m and filling height h = 0.1 m. 

Discrete material is a universe of discrete elements, its density ρi = 2500 kg/m3, elastic moduli Ei 
=3 GPa, Poisson's ratio νi = 0.25; diameters are chosen in uniform distribution over the range 0.0015m 
to 0.0025m. 

Restorability ratio of particles’ interaction and that between particles and a retaining wall er = 0.75. 
Gravity vector g = (0, 0, -9.81) is directed downwards Oz. Front and rear walls are rigid and smooth, 
i.e. the condition is close to that of planar deformation  along Oy. 

 
 

 
Fig. 2  Scheme of numerical experiment, straining condition 

 
Creating of equilibrium pack of solid spherical particles is the initial step in solving problems with 

use of DEM and is to be investigated as a separate independent task. In our study, filling of the volume 
(container) was performed under dynamic algorithm of spherical particles packing. The initial layer of 
non-segregated discrete elements was created at a certain height from the fixed lower boundary z = 0. 
Further, under gravity, particles deposited in the container interacting together and with boundaries. 
On reaching equilibrium state, elements were removed if vertical coordinates of their gravity centers 
did not correspond to zi ≤ h. We suggested frictionlessness between the particles and between the 
particles and the walls; that gives maximum density magnitude. 

When equilibrium pack was completed, the material constituted a universe of discrete elements 
with total weight of 0.3kg. Angle φij of contact friction between the particles was set (in all subsequent 
numerical experiments φij = 30°). For evaluation of rolling resistance coefficient's effect on localized 
flow pattern of discrete material and on evolution of lateral pressure P, numerical calculations were 
performed for the case ij = 0° and ij = 30°. Here, greater ij magnitude was chosen to denote a 
prominent effect of rolling friction. Pressing displaced the wall  towards the discrete material at a 
constant low speed V; that is the case of passive pressure. The distance of wall displacement was 
0.02m; total deformation of the sample εx = 0.1. 
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4. Results and Discussion 
Authors examined effect of rolling resistance angle on material deformation. Fig. 3 shows the final 
state of discrete material in non-rolling conditions and while high rolling resistance. Kinematics 
deformation is colored for visualization. We see that if ij = 0° (Fig. 3a) free surface configuration is 
close to a straight line, i.e. without rolling resistance particles, under action of gravity, can roll down to 
the fixed left edge, forming a smooth slope. 

If ij > 0°, strain state of the material differs. In this case, the sliding wedge may form a 
horizontal area of free surface (Fig. 3b). 

 
а b 

  
Fig. 3 Deformed state of sample; no rolling resistance (a) high rolling resistance (b) 

 
Sliding wedges are formed by distribution of vertical components of displacement vectors, as 

shown in Fig. 4. Low magnitudes of vertical displacements are colored dark; great magnitudes are 
colored light. In the material two or more sliding lines are formed; that differs significantly from the 
theories based on hypotheses for granular medium ultimate state. 

а                                                                                                  b 

  

Fig. 4 Vertical component of particles' displacement vector; no rolling resistance (a) high rolling 
resistance (b) 

 
Let us define material lateral pressure P(t), acting on the retaining wall  during deformation. At a 

fixed time t we suggest: 
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where Fx,i - a horizontal component of i-th particle's contact force vector acting on Г (summing is 
performed only over particles being in contact with a boundary (wall)); Np - number of inter-contacts 

between particles and boundaries; h - maximum vertical contact coordinate. 
 

 

Fig. 5 Change of horizontal pressure P(t) on retaining wall during straining; rolling 
resistance angleij = 0° (I);ij = 30° ; (II) 

 

Fig. 5 shows variables of P(t) during all the experiment. Diagram I corresponds to rolling 
resistance angle ij = 0°, diagram II corresponds to rolling resistance angle ij = 30°. 

It is evident that if specifying external friction between particles (without rolling resistance), 
material passes to limiting state immediately (Figure I). If rolling friction, material state can be 
considered as pre-limiting with deformation magnitude 0.02. If further wall's displacement, granular 
medium passes to limit state; resulting pressure varies significantly.  

 
5. Conclusions 
In problems of loose material mechanics rolling friction should be considered as well as sliding 
friction. In the 3D-model of discrete material deformation caused by displacement of the retaining 
wall (passive pressure), effect of rolling resistance coefficient on emergence of localized flow patterns 
has been confirmed as well as change of horizontal lateral pressure towards the retaining wall while 
further straining. 
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