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Abstract. The paper discusses the structure of Y–TZP–Al2O3 ceramics produced from 

nanopowders and friction surface, wear resistance, friction coefficient of Y–TZP–Al2O3 

composites rubbed against a steel disk counterface at a pressure of 5 MPa in a range of sliding 

speeds from 0.2 to 47 m/s. Analysis by X-ray diffraction, scanning electron microscopy 

showed that the high wear resistance of Y–TZP–Al2O3 composites at high sliding speeds is due 

to high-temperature phase transitions and  protective film formation on the friction surface. 
 

 

1. Introduction 

Additive technologies, or technologies of layer-by-layer synthesis is one of the most dynamically 

developing directions of “digital” production. Zirconia-based ceramics produced from nanopowders is 

considered one of the most promising materials for additive technologies thanks to its ability to widely 

change the mechanical properties as a result of structural changes [1]. Particularly promising is the 

production by means additive technologies of zirconia high speed bearings.  

The ZrO2 tetragonal phase transformation into the monocline phase under the effect of applied stresses 

is the main toughening mechanism of the Y-TZP-based ceramics [1]. One specific feature of the above 

materials is that the temperature rise reduces the contribution of the transformation toughening 

hardening mechanism to their mechanical properties. Especially strongly reduced strength properties 

in Y-TZP ceramics without additives of other oxides. 

The Y-TZP–Al2O3 composites are free of this drawback because the Al2O3 particles act as a hardening 

additive. The Y-TZP–Al2O3 composites are widely popular because of their relatively high thermal 

stability [1]. As follows from the data presented in the literature, usually by friction tests in a pair of 

Y-TZP/ceramic end even at speeds above 1 m/s due to the catastrophic destruction of the friction 

surface [2,3]. 

The upper limit of the sliding speeds can be raised to 10–40 m/s if the steel serves as the counterbody 

[4, 5]. This is caused by the transfer processes of the metal and its oxides to the ceramic surface, 

producing a so-called transfer layer fulfilling the protective function and promoting the wear 

resistance of the ceramics at fast sliding speeds [5]. However, the published data on the friction of 

zirconium-dioxide ceramics are not sufficient to draw conclusions on the processes evolving on the 

friction surfaces or the wear mechanisms within a broad range of speeds and loads in order to choose 

the optimum structure of the material and expand the potential of its practical application. 
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The aim of the current work is to study the structure of friction surface and tribological characteristics 

of the Y-TZP–Al2O3 ceramics in dry friction steel interfaces within a broad range of sliding speeds 

(between 0.1 and 47 m/s). 

 

2. Materials and experimental procedure 

The Zr, Y, and Al aqueous salt solutions served as the original materials for obtaining transformation 

hardened ceramic composites; the salts were turned into powders in the high-frequency plasma 

discharge. They had the following composition: 80 wt % ZrO2 (3 mol % Y2O3) +20 wt % Al2O3. X-ray 

phase analysis revealed that powder contained a mixture of three phases: the ZrO2 tetragonal and 

Al2O3 γ- and ε- modifications. The Y-TZP–Al2O3 powders consisted of hollow spheres and their 

fragments (Figure 1a). The walls of the hollow spheres were polycrystals with a grain size no greater 

than 20 nm.  

The ceramic specimens were compacted in a metallic press mould and then sintered in vacuum at 

1700°C for 3 hours. The microstructure of the sintered ceramic shown in Figure 1b. 

 X-ray phase analysis revealed that after sintering produced tetragonal (T) and cubic (K) zirconium-

dioxide phases and α-phases Al2O3 in the ceramics. Mechanical properties of sintered composites are 

shown in Table 1. The sintered ceramics had high hardness, high bending strength and fracture 

toughness. After sintering, metallographic analysis revealed the residual porosity of the ceramics equal 

to 5 vol %. 

 

   
a)                                                                       b) 

Figure 1. Particle morphology of Y-TZP–Al2O3 powders obtained by the decomposition of salts in the 

plasma of a high frequency discharge (a). Microstructure of Y-TZP–Al2O3 specimens after sintering. 

The surface of the sintered Y-TZP–Al2O3 specimen was thermally etched at 1500°C for 10 min (b). 

 

Table 1. - Mechanical properties of the composites 

Relative 

density 

Hv, 

GPa 

Bending 

Strength, 

MPa 

K1с, 

MPa*m1/2 

0.95 11.4 900 9 

 

 

The pin-on-disk pairs were tested in dry friction on a UMT-1 unit with the sliding speed increased in 

steps. The counterbody was a disk from cast steel with the martensite structure (HRC 63–65), M12C 

carbides, and minimal residual austenite. The specimens of the ceramics in question had rectangular 

sectional area 60 mm2. The test pressure was 5 MPa and the sliding speeds ranged between 0.1 to 47 

m/s; the test duration was selected so that the friction path would be 2 km at any speed.  

 

3. Results and discussion  
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The tribotests carried out in the range of sliding speeds from 0.2 to 47 m/s at a pressure of 5 MPa 

showed that with increasing the sliding speed wear rate of Y-TZP-Al2O3 ceramics first increases and 

then decreases (Figure 2a). The friction coefficient of the ceramics decreases from 0.5–0.8 at low 

speeds to 0.15–0.20 at speeds of 25–47 m/s (Figure 2b).  

 

    
Figure 2. Wear rate (a) and friction coefficient (b) of Y-TZP–Al2O3 ceramics  

as a function of sliding speed on steel. 

 

 

Scanning-electron and optical microscopy demonstrated that the ceramic surfaces acquired a grooved 

relief typical of the abrasive wear mechanism after friction within the speed range up to 1 m/s (Figure 

3a). The worn surfaces manifested extensive areas with traces of delamination and spalling of the 

material at speeds >3 m/s (Figure 3b) , while the ceramic surfaces had a rather smooth relief at speeds 

>6 m/s (Figure 3c). It is particularly noteworthy that the Y-TZP–Al2O3 friction surfaces contain a 

cracking mesh that divides them into individual fragments (Figure 3b,c). Measurement of the spacing 

between the cracks in the sliding direction has revealed that their size distribution has the pattern close 

to a normal distribution with a distinct maximum. 

 

   
          a)                                            b)                                                   c) 

Figure 3. SEM images of friction surface of Y-TZP–Al2O3 ceramics after tests at: v= 0.9 m/s 

(а); v=4.7 m/s (b); v= 47 m/s (c). Arrow indicate sliding direction. 

 

According to the X-ray phase analysis of the friction surfaces of the Y-TZP–Al2O3 ceramics, there are 

three (monocline, cubic, and tetragonal) crystalline modifications, depending on the sliding speed. It 

should be noted that the monocline phase does not exist in the original ceramics, while it exists only in 

the amount of 7–15% by volume after tests at slow sliding speeds, for example up to 11.1 m/s of the 

Y-TZP–Al2O3 ceramics. 
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The appearance of a monoclinic phase on the friction surface of Y-TZP-Al2O3 evidence of 

martensitic transformation of the metastable tetragonal phase to the stable monoclinic phase. 

Reduction of the monocline zirconium-dioxide phase as the sliding speed accelerates can be attributed 

to growth in the contact-zone temperature and reduction of the thermodynamic stimulus for the 

tetragonal monocline transformation [1]. The concentration of the K-phase typical of the original 

condition of the ceramics (10 vol. %) remains unchanged in the two materials up to the speed 20 m/s. 

If the sliding continues to accelerate, its concentration in the specimens grows after the tests to ≈15 vol 

%. The emergence of the cubic phase on the surfaces of the specimens at the maximum sliding speeds 

is likely due to the fact that a part of the tetragonal phase undergoes diffusion and transforms into the 

cubic phase. This phase is favored by the elevated temperatures in the contact zone, assessed 

according to [6] to be on the order of 2000°C at the speed of 10 m/s. Optical and scanning-electron 

microscopy reveals that the Y-TZP–Al2O3 friction surfaces at sliding speed above 6 m/s become 

relatively evenly covered with a transfer layer. The transfer layer at slow and moderate speeds is 

distributed extremely irregularly over the surface, leaving large areas completely uncovered. 

It has previously been shown [5] that of the subsurface regions of the Y-TZP ceramics reveals a 

region of material after the tests within the speed range from 0.1 to 4 m/s that underlies the fine layer 

(1–2 μm) and has a subsurface layer with the submicrocrystalline structure in which the shapes of the 

grains are considerably changed in the sliding direction. This zone is thickest (about 10 μm) at 

moderate sliding speeds (≈4 m/s), i.e., when the wear rate of the ceramics matters most. The 

differently shaped grains disappear in the Y-TZP ceramic specimens as soon as the speed exceeds 6 

m/s; the grains remain the uniaxial, as they originally were. The differently shaped grains are not 

observed in the Y-TZP–Al2O3 ceramics throughout the whole range of speeds (Figure 4), including at 

the moderate sliding speeds when the material undergoes intensive wear (Figure 4a). 

 

  
a)                                                                  b) 

Figure 4. SEM images of structure of subsurface regions of Y-TZP–Al2O3  

ceramics after friction at v = 4.3 m/s (a) and v = 11.1 m/s (b).  

Arrows indicate sliding direction. 

 

The wear processes evolving at speeds 2–4 m/s correspond to high-temperature adhesive - 

notwithstanding the common tribological behavior of the Y-TZP [5] and Y-TZP–Al2O3 ceramics, the 

latter material containing the Al2O3 particles manifests stronger wear resistance at moderate (3–4 m/s) 

sliding speeds. In all probability, the structure of this ceramic composite with hardening aluminum- 

oxide particles has a stronger surface load-bearing capacity during friction when the continuous 

transfer layer has not yet formed on the ceramic surface. 

 

4. Summary 

The accomplished experiments have demonstrated that the Y-TZP–Al2O3 ceramic specimens sintered 

from nanopowders possess high wear resistance at high sliding speeds close to 47 m/s, irrespective of 
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the elevated temperature in the contact zone resulting in high-temperature phase transitions. A broad 

range of sliding speeds has been identified (6–47 m/s) within which the ceramics undergo virtually no 

wear because a quasiliquid film appears and it coats regularly their surface. 
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