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Abstract. The work studies porous ceramics produced from ultra-fine powders. The porosity 

of ceramic samples was from 15 to 80%. The ceramic materials had cellular structure. A 

distinctive feature of all deformation diagrams obtained in the experiment was their 

nonlinearity at low deformations, which was described by the parabolic law. It was shown that 

the observed nonlinear elasticity for low deformations on deformation diagrams is due to 

mechanical instability of cellular elements in a ceramic frame. 

1. Introduction 

Today, the use of additive technologies in the production of structural and functional application of 

ceramics is a promising direction. Additive technologies allow producing objects of complex shape. 

Ceramics based on partially stabilized zirconia are the most interesting among the variety of 

ceramic materials due to their inherent high fracture toughness because of transformation toughening 

phenomena. Their characteristics are known to be determined by the quality of source ceramic powder 

(particle shape, particle size distribution), the conditions of compaction and sintering modes and any 

features of each phase, and how these phases, including pores, are arranged in relation to each other. 

The most important factor in successful application of materials is understanding the features of a 

structure emerging in them and their behavior under mechanical impact. 

Plasma spray synthesis and chemical co-precipitation methods are the main efficient routes of 

ultra-fine powder production for additive processes to obtain ceramics due to activation of 

sintering [1]. The sintering process for these powders with identical chemical composition may be 

very different, and the final structure of a sintered body depends on particle size, surface energy, strain 

conserved in the whole system, etc. [2]. For example, one can obtain hollow-ball particles, which 

shape will condition a special morphology structure of materials [3, 4]. 

The aim of the work is the investigation of densification, structure and mechanical properties of 

materials from zirconia-based powders produced by plasma spray synthesis and sintered at different 

temperatures. 

2. Materials and experimental procedure 

Ceramic samples made from plasma-sprayed and chemically precipitated (97 mol% ZrO2 + 3 mol% 

Y2O3) powders were studied. To study densification kinetics, the samples were produced by pressing 

as-received powders till relative density of 0.33 and sintering at 1500 °C for up to 20 hours.  
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Structure investigation was carried out for the samples sintered in the temperature range 1400–

1650 °C during isothermal holding for 1 to 5 hours after uniaxial compression with the loading speed 

of 4*10-4 s-1.  

Phase identification and evaluation of coherently diffracted domains (CDD) were determined from 

X-ray diffractometry data [5, 6]. Scanning electron microscope observations operated at 20-30 kV 

were used to determine the structure and average grain and pore size. 

3. Results and discussion 

Zirconia powder was characterized by spherical particles and their agglomerates (Figure 1a). The 

average particle size was 1.5 m. The specific surface of chemically precipitated powder was 

measured to be 7 m2/g. According to the X-ray data, the tetragonal phases of ZrO2 were predominant 

in the amount of 95% with an average CDD size of 20 nm. An average CDD size of monoclinic phase 

was equal to 20 nm. 

Density dependencies during sintering process are represented in Figure 1b, and it can be 

concluded that most intensive densification occurred at the heating stage. The analysis of this 

dependence using equation L/L=K∙n (L/L is relative shrinkage, K is kinetic coefficient; n is 

constant of densification rate) in log-log coordinates revealed that n for the samples made from 

plasma-sprayed powder is twice as much as for the samples based on chemically precipitated powder: 

0.1 and 0.04, respectively [7]. 
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Figure 1. ZrO2 powder synthesized by plasma-sprayed method: a) TEM image, bright and dark 

filed; b) dependencies of relative density on the duration of isothermal holding for ZrO2 powder and 

kinetic dependences of samples shrinkage during isothermal holding. 

 
X-ray analysis has shown that the tetragonal phase content in sintered ceramics was decreasing 

with the increase of the holding time up to 5 hours for materials based on plasma-sprayed powder 

from 95% down to 60%; further increase of holding time had no effect on the phase composition. 

The structure of ceramic materials produced from plasma-sprayed ZrO2 powder was represented as 

a system of cell and rod structure elements (Figure 2a). Cellular structure formed by stacking hollow-

powder particles can be easily seen on the images of fracture surfaces of obtained ceramics. There 

were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are 

not filled with powder particles and the smallest pores in the shells of cells. The cells generally had 
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irregular shape. The dimensions of the cells are far larger than the thickness of walls, which are 

presented by single-layer ZrO2 grains. 

The increase of the pore space in the ceramics was accompanied by the decrease of the average 

grain size. Quantity and the size of pores and the grain size in the materials produced by powder 

technology are highly dependent on thermokinetic sintering conditions (Figure 2b). Obviously, the 

increase in the volume of pores in the material from ~30% up to 80% was achieved by reducing the 

sintering temperature of the samples, and it was accompanied by an increase in the average size of 

large pores from 2 to 6 microns. Changing the porosity of the material had practically no influence on 

the average size of interparticle pores, the average size of which was 0.5 microns. It can be assumed 

that the presence of large pores close to a spherical shape in the tested ceramics is due to the presence 

of hollow spherical particles in source powders, since their average size is commensurate with the 

average size of large pores in the sintered material.  
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Figure 2. a) Fracture surface of sintered ceramic samples. Cellular structure of porous ceramics 

(porosity is 30%); b) The dependence of average size of the interior of the cells (1), of average size 

of grain (2) and of average size of small interparticle pores (3) on porosity.  

 

Stress-strain diagram of porous ceramics, which were produced by plasma-sprayed method are 

presented in Figure 3a. The obtained stress-strain diagrams had descending branch with a monotonic 

decrease of stress. This is the evidence of damage accumulation in the samples in contrast to the 

stress-strain diagrams of brittle materials with a homogeneous structure. Microdamages appearing in 

the material has local nature and the sample under load retained the ability to resist increasing load. A 

distinctive feature of all the  -   diagrams obtained in the experiment was their nonlinearity at low 

deformations which was described by the parabolic law. Cyclic loading of samples on the parabolic 

section of the diagrams did not reveal residual strain. Therefore, the nonlinearity in the stress-strain 

diagrams was due to the elastic deformation of ceramics with cellular structure.  

Replotting deformation diagrams in ln-ln coordinates allowed us to determine the exponent of the 

Hollomon equation [8] ( = K n , where  is true stress;   is true strain; n is parabolic index; K is 

constant for a given material, defined as a value of true stress for small true strain) from the 

experimental data. In this case, the index takes the value of the power function of the slope of the 

strain diagram in logarithmic scale (Figure 3b).  
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Figure 3. a) Stress-strain diagrams of ceramics compression with the porosity of 50%; b) the 

dependence of parabolic index from porosity. 
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Figure 4. a) The dependence of maximum stress σmax and the stress corresponding to emergence of 

microdamages in material σd from porosity; b) The dependence of strain corresponding to the end of 

the parabolic section on the rising branches of the stress-strain diagrams ε1 and the strain 

corresponding to the maximum value of stress in ceramic samples εmax from porosity. 

 

The dependencies of maximum stress σmax and the stress corresponding to the emergence of 

microdamages in material σd from porosity are presented in Figure 4a. Evidently, while the porosity 

decreases in the ceramics from 80% down to 30%, the maximum stress and the stress corresponding to 

the emergence of microdamages in material increased from 50 to 400 MPa and from 50 to 250 MPa, 

respectively. With the increase in the quantity of pores in the ceramics, the difference between the 

maximum stress and the stress corresponding to the emergence of microdamages decreased. When the 

International Seminar on Interdisciplinary Problems in Additive Technologies IOP Publishing
IOP Conf. Series: Materials Science and Engineering 140 (2016) 012017 doi:10.1088/1757-899X/140/1/012017

4



volume fraction of pores in the samples was more than 60%, σmax and σd were identical. Rising and 

descending branches of stress-strain diagrams became gentler. 

The dependence of strain corresponding to the end of the parabolic section on the rising branches 

of the stress-strain diagrams ε1 (1) and the strain corresponding to the maximum value of stress in 

ceramic samples εmax (2) from porosity are presented in Figure 4b. The increase of porosity from 30% 

up to 80% caused the increase of εmax from 1.5% to 3.5%. The obtained values of relative strain (up to 

~3.5%) were significantly higher than values for nonporous ceramics. The increase of the porosity in 

ceramics had virtually no impact on the amount of strain ε1, which averaged to 0.5%. 

4. Conclusion 

It has been shown that the most intensive densification of studied materials took place during heating 

stage. In the stress-strain diagrams, the nonlinearity occurred due to the elastic deformation of 

ceramics with cellular structure. The character of the received strain-porosity dependences probably 

was a result of porosity type change. 

It was shown that the “stress - strain” diagrams on the initial stage of deformation was nonlinear 

with high parabolic factor of strain-stress curves. It was shown that rod-like and/or cellular structures 

were formed in material, and the fracture of material occurred in the elastic area. 
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