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Abstract: Alloys based on the titanium-niobium system are widely used in implant production. 

It is conditional, first of all, on the low modulus of elasticity and bio-inert properties of an 

alloy. These alloys are especially important for tooth replacement and orthopedic surgery. At 

present alloys based on the titanium-niobium system are produced mainly using conventional 

metallurgical methods. The further subtractive manufacturing an end product results in a lot of 

wastes, increasing, therefore, its cost. The alternative of these processes is additive 

manufacturing. Selective laser melting is a technology, which makes it possible to synthesize 

products of metal powders and their blends. The point of this technology is laser melting a 

layer of a powdered material; then a sintered layer is coated with the next layer of powder etc. 

Complex products and working prototypes are made on the base of this technology. The 

authors of this paper address to the issue of applying selective laser melting in order to 

synthesize a binary alloy of a composite powder based on the titanium-niobium system. A set 

of 10х10 mm samples is made in various process conditions. The samples are made by an 

experimental selective laser synthesis machine «VARISKAF-100МВ». The machine provides 

adjustment of the following process variables: laser emission power, scanning rate and pitch, 

temperature of powder pre-heating, thickness of the layer to be sprinkled, and diameter of laser 

spot focusing. All samples are made in the preliminary vacuumized shielding atmosphere of 

argon. The porosity and thickness of the sintered layer related to the laser emission power are 

shown at various scanning rates. It is revealed that scanning rate and laser emission power are 

adjustable process variables, having the greatest effect on forming the sintered layer.   

1. Introduction 

Titanium and its alloys are widely-used materials for manufacturing medical implants and surgical 

instruments. Tooth replacement and orthopedic surgery are the fields, where these alloys are used most 

frequently (Figure 1) due to their good mechanical properties, bio-compatibility and high corrosion 

resistance.   
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Figure 1. Tooth implant produced of titanium alloy [1]. 

 

The high modulus of elasticity (above 100 GPа) is a disadvantage of titanium and alloys on its base. 

Therefore, the main part of mechanical load is applied to the bones, and not to the implant, resulting in 

bone tissue resorption (Figure 2), implant weakening and reoperation [2]. At present, search and 

development of alloys with the low modulus of elasticity, having high strength and sufficient product 

plasticity though, are in focus of the scientists [3, 4]. 

 

 
Figure 2. Resorption (failure) of a bone around the implant [5]. 
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Alloys of the titanium-niobium system are distinguished by the most appropriate combination of 

mechanical properties. Moreover, niobium and titanium are non-toxic elements and do not react with 

body tissues. Some alloys of the titanium-niobium system have the low modulus of elasticity. 

The conventional metallurgical methods of manufacturing titanium alloys are imposed by the 

technical and principal restrictions [6]. Titanium and cobalt-chromium alloy implants are 

manufactured via casting with further milling or turning, using methods of powder metallurgy, hot 

stamping, and stamping with further milling.  

Casting is also a method to produce implants. High-frequency casting machines, providing reliable 

quality of casts, are used for melting steel or cobalt-chromium alloys. As a rule, producing implants of 

cobalt-chromium alloys is not difficult in laboratory conditions. However, casting implants of 

titanium-based alloys is more difficult because titanium reacts with nitrogen and oxygen when heating 

in air, and with form lining in the molten state. The technology of casting is based on vacuum melting 

and casting, and unconventional high fireproof forms are required as well. Therefore, titanium 

implants with a good quality surface can be produced in industrial conditions only. Cast implants are 

subject to X-ray diffraction control, revealing up to 5–8 % of wastes [7].  

Laminar implants can be milled only when developing new titanium structures. In mass production 

milling an implant of a metal sheet is non-value-added. Spiral, cylindrical implants can be produced 

via turning only.   

Hot stamping is a principal procedure of metal processing, including titanium and cobalt-chromium 

alloys. However, it should be noted implants are small products, and their gas absorbability grows 

when heating, therefore, technological procedures are strictly standardized. Equipment for stamping is 

quite complex and expensive, so it can be used when mass-manufacturing critical parts. 

The procedure based on stamping and milling is technologically simple, so mass-manufacturing of 

products is more profitable. Test-production of titanium implants has revealed that it is the most 

appropriate and acceptable variant. The production of implants comprises two phases. The first phase 

includes cutting implant half-products by a special stamp from a 3 mm thick titanium sheet. The 

second phase is aimed at simultaneous thinning the implant base on both sides up to 1.2 mm by a 

milling machine. As burrs are removed, the implant is prepared for electrochemical polishing [7, 8].  

These days the methods of layer-by-layer laser synthesizing end products of various powder 

materials are being successfully adopted by the health care system - one of the most important fields 

of human activity. It is mainly because the manufacturing cycle of the implant is shorter than that of 

conventional processing methods (milling, turning etc.), it is possible to save expensive materials and 

manufacture products of a complex geometry and specified porosity as well [9, 10]. 

Selective laser melting is a procedure of manufacturing a 3D product via successive laser beam 

fusion of powder materials according to a specified program (Figure 3). 
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Figure 3. A layout of selective laser melting process [11]. 

 

Selective laser melting supports selecting and monitoring all basic parameters, which affect the 

process of product synthesizing such as emission power, scanning rate, and temperature of powder 

heating [11-13]. So it is possible to manufacture end products with specified mechanical 

characteristics [14].  

The process includes two phases: first, an even thin layer of powder is spread all over the working 

area, then the laser is switched on; and the areas similar to the section of object to be produced are 

melted. A piston goes down approximately as deep as thick the layer is, then, the procedure is 

repeated, as soon as the top point of the model is approached.  

Process parameters are adjustable at each phase of selective laser melting. To put the powder one 

can use a roller or a scraper. Melting is possible on the outer contour of the layer only or over the 

complete depth of the model.   

Selective laser melting requires no supporting structure as a big amount of powder around the 

model keeps it from destruction, unless the end form is acquired and the mechanical article strength is 

achieved [15-17]. 

 

2. Methods and equipment of experimental research  
A SLS machine «VARISKAF-100МВ» is used for selective laser melting a composite powder 

containing 60 wt. % Ti and 40 wt. % Nb (Ti40Nb) [16]. This machine supports SLS/SLM 

synthesizing products of various physical configurations from a powdered material. The products can 

be sintered both in vacuum and in diverse gaseous mediums. The layout of the machine VARISKAF-

100МВ is given in Figure 4. 

As the result of carried out experiments a set of samples is produced in the following process 

conditions. Laser emission power is 68, 75, 86, 96 and 106 W; scanning rate is varied in the range 

0.017–0.05 m/s; scanning pitch is 0.1 mm.  
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Multilayer 10x10 samples are produced when thickness of powder layer is 0.7 mm. Samples are 

melted in argon. Plates made of alloy ВТ1-0В are used as a substrate. The substrate with powder is 

heated up to 200 °С, kept for 15 minutes in vacuum at the certain temperature, and melted in argon 

afterwards. The process temperature is controlled by a thermocouple of grade ХА, the junction of 

which is in a substrate. Argon is supplied to the chamber as long as melting is carried out. 

 

 
 

Figure 4. The layout of the machine VARISKAF-100МВ: 1 – «flying» optical instruments; 2 – 

vacuum chamber; 3 – evacuation system; 4 – ytterbium laser; 5 – machine control assembly;               

6 – computer numerical control. 

 

 

An operating area, which shows preheating the substrate and melting the powder, is given in Figure 5. 

 

 
 

Figure 5. Operating area of the machine. 
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Laser beam scanning strategy is a zigzag line (Figure 6). 

 

 
 

Figure 6. Scanning strategy. 

 

3. Results and Discussion 

Optical images of Ti40Nb samples are given in Table 1. As one can see, increasing scanning rate 

results in augmentation of quantity and dimensions of pores. Samples made at laser power 68–106 W 

and scanning rates 0.05 and 0.042 m/s do not differ much. However, the quantity of pores is decreased 

and uniform areas of melted powder are formed as the rate of scanning is reduced to 0.017–0.042 m/s 

and emission power grows up to 96–106 W (Figure 7). 

 

 
Figure 7. The relation of sample porosity to the laser emission power at various scanning rates. 

 

The heat input grows and porosity decreases, as one can see in Figure 7, because of the increase in 

laser emission power and slowing down rate of scanning. Laser emission impact on the powder section 

takes longer as the rate of scanning is reduced, so fusion of the layer gets better.  
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Table 1. Single layers of alloy Ti40Nb 

Rate, m/s Laser emission power, W 

68 75 85 96 106 

0.05 

    
 

 
 

0.042 
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We measure the formed layer thickness in samples produced under emission power 106 W. In Figure 

8 one can see that penetration depth is reduced as the rate of scanning is decelerated.   
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Figure 8. The relation of the melted layer thickness to the rate of scanning.  

 

As the consequence, we carried out an experiment and made a sample in the conditions: laser mission 

power 106 WВт; scanning rate 0.017 m/s and pitch of scanning 0.1 mm. To increase the heat input a 

titanium substrate is pre-heated up to 400 °С. The sample produced in conditions of the maximally 

possible heat input of the machine is shown in Figure 9. 

 

 
Figure 9. A melted layer of a composite powder in conditions of a maximal heat input.  

 

The porosity of the sample is approximately 9 %, however, the thickness of the melted layer increases 

considerably to 570 μm, probably because of increasing temperature and the total heat input.  

 

4. Conclusion 

To sum up a conclusion can be drawn that laser emission power and rate of scanning are principal 

variables, which are important to form a melted layer of Ti40Nb composite powder. It should be noted 
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that the slowing down rate of scanning and the increasing laser emission power result in the decrease 

of porosity and increase in the thickness of the formed layer of the alloy. 
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