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Abstract. The morphology and properties of powders ZrW2O7(OH)2∙2H2O and ZrW2O8, 

obtained under the conditions of hydrothermal synthesis was studied. Using the high-

temperature X-ray analysis, the mechanism of formation of zirconium tungstate was 

established. The influence of temperature on the structure and properties of materials was 

studied using shadow-casting method. 

1.  Introduction 

Materials with negative thermal expansion have received attention of researchers in recent decades. 

Scientific interest determined the establishment of the causes and explanation of the unique thermal 

behavior of this group of materials. Materials contracting upon heating can solve the technical 

problem towards the incompatibility of thermal expansion of the constructional design elements. The 

combination of materials with positive and negative values of thermal expansion in the required ratio 

allows obtaining materials with low or zero thermal expansion (so-called invar effect). The field of 

application of composite materials is wide and includes such areas as the production of high-precision 

optical mirrors, thermal protection of descent modules. Additive technology enables the production of 

ceramic components of complex shape. 

Zirconium tungstate is a part of oxide complex system AM2O8 (A = Zr, Hf; M = W, Mo). A 

distinctive characteristic of zirconium tungstate is isotropic compression in a wide temperature range 

from 0.3 K to 1050 K (α = -8.6∙10-6 K-1) [1]. The thermal behavior of the material is due to the 

structure. The zirconium tungstate structure is known to consist of ZrO6 octahedron and WO4 

tetrahedron rigidly connected by a common oxygen atom. With increasing temperature, the oxygen 

atom in Me - O - Me (Me = Zr, W) bonds starts to oscillate in the transverse direction, which causes 

the rotation of structural elements, leading to compression of materials [1, 2]. 

The structure of the zirconium tungstate is strongly affected by the production method as well as by 

external factors. Promising methods for producing nanosized zirconium tungstate powder are chemical 

methods, including hydrothermal synthesis. In this case, ZrW2O8 powder may be prepared by the 

controlled decomposition of the ZrW2O7(OH)2∙2H2O precursor synthesized at relatively low 

temperatures. The structure of ZrW2O7(OH)2∙2H2O plays an important role in the formation of 

zirconium tungstate [3, 4] and is very sensitive to preparation conditions. Even minor variation in the 

production process of the powder has effect on the crystallization process of ZrW2O8. 
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Thus, the aims of the work are to study the structure, phase composition and morphology of the 

precursor and zirconium tungstate powders, to investigate the effect of temperature on the structure 

and properties of materials, to determine the mechanism of ZrW2O8 formation. 

2.  Experimental procedure 

The powder of ZrW2O8 was obtained by the thermal decomposition of ZrW2O7(OH)2∙2H2O precursor 

synthesized by the hydrothermal method. The detailed description of the method is given in paper [5].  

The specific surface of the powders synthesized was measured by the low-temperature nitrogen 

adsorption method (BET) [6]. Raw density (ρn) was determined by equation: ρn = (m2-m1)/V, where m1 

is the weight of container, m2 is the weight of container with powder, V is container volume. 

The microstructure of ZrW2O8 was observed by using Hitachi TM-1000 scanning electron 

microscope, JEM-2100 transmission electron microscope and MicroVis heating microscope. For this 

experiment, the powders were compressed into cylindrical samples, which were placed in the 

installation and heated from room temperature to 1678 K. In microscope, the form of a shadow from 

samples was fixed, which was used to determine the change of size and shape of simples, wetting 

angle, the contact angle between the sample and the alumina substrate, on which materials were 

installed during heating. Scanning was carried out in range of 298–1678 K; the step was 10 K every 

10 seconds.  

The phase composition and parameters of crystal structure materials was studied using Bruker D8 

diffractometer (40 kV, CuKα). Shooting was conducted with the use of standard software and realized 

in the range of 10 < 2theta < 70 with a step size of 0.02o, acquisition interval 3 c. Temperature ranged 

from 298 to 1023 K with a step size of 100 K. 

3.  Results and discussion 

Scanning and transmission electron microscopy (SEM and TEM) analysis has shown that 

ZrW2O7(OH)2∙2H2O powder was represented by agglomerates of whisker-like particles and single 

whisker-like particles (Fig. 1a). The average size in transverse dimension of the particles forming the 

agglomerates was equal to 50 nm, the average length of single particles was 200 nm. Such shape of the 

particle was due to the influence of initial components, especially the kind of acid. It is known that the 

whisker shape of ZrW2O7(OH)2∙2H2O particles was determined by the use of hydrochloric acid [3, 7]. 

The zirconium tungstate powder consisted of whisker-like particles having a block structure. The 

average block size was up to 50 nm (Fig. 1b). The average transverse size of particles was up to 

700 nm; the size in longitudinal direction varied between 500 nm and 5 microns. The particle size 

distribution was unimodal [8]. 

Evidently, Figure 1 shows that ZrW2O8 crystals inherited the shape and size of ZrW2O7(OH)2∙2H2O 

crystals, except for typical nanosized block structures formed in ZrW2O8 particles. 

Raw density, characterizing the weight of a unit of freely poured powder, for the two powders was 

almost similar and was equal to 0.3 g/cm3. The specific surface area, which characterized the 

dispersion of powder material, for the two powders was significantly different and was equal to 5.58 

m2/g for ZrW2O8 and 19.95 m2/g for ZrW2O7(OH)2∙2H2O. Probably, the variation in values of specific 

surface area was determined by the change in the shape of particles, namely the disappearance of 

agglomerates in precursor powder and formation of blocks in ZrW2O8 particles. 

Investigation of the effect of temperature on the structure and properties of powders was carried out 

using the heating microscope. The obtained images helped to determine contact angle, hot stage of 

samples and estimate the temperatures of the beginning of sintering, softening, melting and 

spheroidization processes (Figure 2). The obtained values for ZrW2O7(OH)2·2H2O and ZrW2O8 are 

presented in Table 2. 

Samples prepared from precursor powder were sintered at lower temperature (958 K) as compared 

to ZrW2O8 (1240 K). Moreover, this sample sustained higher temperatures and melted at 1431 K in 

contrast to 1360 K for ZrW2O8. 
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Table 1. The characteristics of ZrW2O7(OH)2∙2H2O and ZrW2O8 powders 

Samples 
Bulk density,  

g/cm3 

Specific surface area, 

 m2/g 

Average particle size,  

μm 

ZrW2O7(OH1,Cl)2·2H2O 

 

0.31  5.58 longitudinal 0.5 - 7 

transverse 0.05 – 0.2 

ZrW2O8 0.31 19.95 longitudinal 0.5 - 5 

transverse 0.03 – 0.7 

 

While the temperature increased up to 473 K, the monotonic decrease of sample’s height 

ZrW2O7(OH)2·2H2O was noted, which continued up to 1408 K; then, there was a softening of the 

material. The height of the sample decreased by 37% in relation to its original size. The height of 

ZrW2O8 sample slightly changed with increasing temperature. 

The dependence of the change in the wetting angle (θ) of the samples with substrate is shown in 

Figure 3. According to the plot, the wetting angle was remained almost unchanged up to 900 K. 

Further increase of the temperature up to 1300 ± 23 K led to the decrease and, subsequently, to the 

increase of θ values, associated with the deformation of samples upon heating. Obviously, Figure 2 

demonstrated the change in the shape of the sample under the influence of temperature; the contact 

area between the sample and the substrate was decreased, which led to the fluctuation of samples. The 

subsequent increase of the temperature resulted in a sharp decrease of wetting angles associated with 

melting of the materials. 

 

 

 

 

a) 

 

b) 

Figure 1. The SEM and TEM images of a) ZrW2O7(OH)2·2H2O and b) ZrW2O8 powders 
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Figure 2. Heating microscopy of the evolution of ZrW2O7(OH)2·2H2O and ZrW2O8 samples 

 

Table 2. Temperature data for ZrW2O7(OH)2·2H2O and ZrW2O8 samples 

Samples Sintering Softening Sphere ½ sphere Melting 

ZrW2O7(OH1,Cl)2·2H2O 958 K 1408 K 1360 K 1405 K 1431 K 

ZrW2O8 1240 K 1285 K 1231 K 1350 K 1360 K 

 

High-temperature in situ X-ray analysis showed that only X-ray peaks of ZrW2O7(OH)2·2H2O were 

recorded at room temperature [5]. The crystal structure of ZrW2O7(OH)2·2H2O transformed into X-ray 

amorphous phase above 472 K. The crystal structure corresponding to cubic phase of ZrW2O8 was 

formed up to 873 K. The dependence of the total intensity of all crystalline phases reflexes related to 

background intensity (ΣI/Ib) on the temperature in logarithmic coordinates is shown in Figure 4. The 

resulting dependence was approximated by linear functions; the intersection point of lines 

corresponding to temperature was equal to 625 K. The comparison of high-temperature X-ray results 

with thermal analysis carried out earlier [9] has shown that zirconium tungstate was formed by X-Ray 

amorphous phase at 625 ± 25 K, Fig. 4. 
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Results of high-temperature in 

situ X-ray study of ZrW2O8 

powder showed solely the peaks of 

cubic zirconium tungstate in the 

pattern at room temperature. The 

heating of the powder above 

473 K led to the disappearance of 

some peaks characteristic to 

α-ZrW2O8. According to [1, 2], the 

disappearance of some reflexes 

was due to "order - disorder" phase 

transformation from low- to high-

temperature modifications of 

zirconium tungstate. Above 823 K, 

WO3 and ZrO2 peaks were 

recorded in the pattern; their 

intensity increased with increasing 

temperature. Reflexes of ZrW2O8 

were not observed above 1098 K. 

The total intensity (ΣI) of 

ZrW2O8 peaks as the function of 

temperature is shown in Figure 5. 

As one can see, values ΣI changed 

with temperature: ΣI decreased 

from 298 to 473 K, varied within 

the limits of error from 473 to 823 K and increased above 823 K. The change of total intensity at 

473 K corresponded to α → β phase transition, which was accompanied by the disappearance of 

diffraction maximum. High-temperature cubic phase of zirconium tungsten remained stable up to 

823 K. A further increase of temperature led to an increase in the total intensity of X-ray peaks caused 

by the advent of WO3 and ZrO2 peaks. Possibly, at 823 K, ZrW2O8 atoms in the lattice started 

rearranging to form sublattices of ZrO2 and WO3, which led to the decomposition of zirconium 

tungstate to tungsten (VI) oxide and zirconium (IV) oxide above 1098 K. 

 

 
Figure 3. Wetting angle as function of temperature. 
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4.  Conclusions 

The morphology of ZrW2O7(OH)2·2H2O and ZrW2O8 powders was similar and consisted of whisker-

like particles, what evidenced the isomorphism of crystals.  

The effect of temperature on the structure and properties of powders was investigated. The change 

of the size and shape of samples, wetting angle, contact angle between the sample and the substrate 

were determined. It was established that the wetting angle remained almost unchanged up to 900 K. A 

further increase of the temperature up to 1300 ± 23 K led to the decrease and subsequently the increase 

of θ values, associated with material spreading on the substrate upon heating. 

High-temperature in situ X-ray studies have shown that zirconium tungstate was formed through 

X-Ray amorphous phase at 625 ± 25 K and remained stable from room temperature up to 823 K. 

Further increase in temperature led to the decomposition of zirconium tungstate caused by the change 

of the lattice structure by restructuring ZrW2O8 atoms to form sublattices of WO3 and ZrO2. 
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