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Abstract. This paper presents a calculation method suitable for cable-beam shell structures. It is based on both nonlinear 
finite element and force density methods. The main idea is to define the solution sequence for stress – strain state 
problem of above mentioned structures by nonlinear finite element method. Every successive solution involves the 
previous one as an initial estimate in convergent domain. To find an initial estimate for the first solution a force density 
method is used. The proposed method is tested on a new large space umbrella reflector. 

INTRODUCTION 

Cable-beam shell structures (abbreviated as CBSS) are widely used in modern construction building and 
architecture. This can be explained by the fact that such structures not only embrace significant space area but also 
are lightweight. Stadium roofs, tents, cable bridges, and large space antenna reflectors are examples of CBSS. A 
specific feature of CBSS is its geometrical non-linear behavior, i.e. significant (comparable with its size) 
displacements of its elements under external loads [1]. Therefore, numerical analysis of such systems, including 
geometrical nonlinearity, is an important step in its designing. There are research books and papers related to 
designing CBSS. The most interesting are [2,3] which describe up-dated approaches in form-finding of cable 
structures and their optimization.   

The present paper presents a calculation approach for CBSS strain-stress state problem based on both force 
density and nonlinear finite element methods (FEM, FDM) [2-7]. The main idea of the proposed method is a 
construction of the solution sequence (based on nonlinear FEM) where every next solution involves the previous one 
as initial estimate in certain convergence domain. To obtain the initial estimate for the first solution a FDM is used. 
Such an approach introduced since an initial estimate randomly selected could result in a divergent solution. 

PROBLEM STATEMENT 

The essential relations, which describe stress-strain state of CBSS are equilibrium equations, strain tensor and 
Hooke’s law (1) - (3): 
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where, ui, ij, 0
ij, ij – displacement vector components, second Piola-Kirchhoff stress tensor; initial stress tensor 

and strain tensor, respectively; Em, m – elasticity modulus and Poisson ratio of m-material, respectively. 
Boundary conditions for (1) - (3) are: 
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where, x={x1, x2, x3} – coordinates vector of CBSS points in continuum ; 0 ( )iu x - displacement on the boundary

u ;  ( )n
ip x - stress on the boundary  which is characterized by normal vector n .   

CALCULATION METHOD 

The above-mentioned calculation method for problem (1) - (5) is depicted on Figure 1:     

 
FIGURE 1. Calculation method scheme.  

It is known that in FEM the nonlinear equilibrium equation relative to displacement field is essential. It is 
linearized and solved by the iterative Newton-Raphson method, where the following equation is obtained: 

 Ku P  (6) 
where, K - stiffness matrix; u - unknown displacement vector; P - external loads vector.   

Resolution of (6) is: 
 1u K P  (7) 
If the displacement field (7) is known we can calculate derivative values such as tension, stress and strain and so 

on for CBSS. But calculated tension values for cable elements could be insignificant, which, in its turn, could result 
in small values of stiffness matrix elements. Thus, there is a problem to find 1K  in (7).  Also, one should remember 
that initial estimate should be determined in any iterative method.  

FDM allows to find a good initial estimate because it identifies shape of tensioned cable elements in equilibrium 
with certain constrains. It was developed by Linkwitz and Schek for designing the Munich Olympic Stadium roof 
in 1971 [4]. Current FDM developments could be found in [8-11]. FDM is based on linearized equilibrium equations 
for tensioned linear cable elements. These elements are connected into nodes which are subjected to external loads.  
Some nodes are fixed (known nodes) and others are free (unknown nodes) (Fig. 2). 

Convergence domain in 
nonlinear FEM 
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FDM Intermediate solution, 

found by FEM  
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FIGURE 2. Cable elements under external load in FDM.  

 
Let’s consider arbitrary node i , which is subjected to external load , ,x y zP P PP  (shown in Fig.1 as red arrow). 

Presuppose that the remaining cable elements nodes are fixed. In this case, equilibrium equations for i in Cartesian 
coordinates Oxyz are: 
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where,  , ,i i ix y z  - unknown coordinates of node i; ic - number of cable elements connected to i;  , ,j j jx y z - 

coordinates of cable element fixed nodes connected to i.; ,j jT l  - tension value and length of j- element connected to 

i; , ,x y zP P P - coordinates of external load to axes Ox, Oy, Oz.  

As one can see, equations (8) are nonlinear to , ,i i ix y z . To linearize it a force density parameter j j jq T l  is 
introduced. So (8) could be rewritten as (9): 
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Varying jq and resoling (9) certain , ,i i ix y z could be found.  
Equilibrium equations (9) are written for individual node i. Generalized matrix form of equilibrium equations 

could be found in [3,5]. 
In form-finding cable structures with specific constrains, for example, certain tension values for elements, 

nonlinear equations are introduced to describe these constrains:  
 * ( ), ( ), ( )g q g x q y q z q 0  (10) 

where, ( ), ( ), ( )x q y q z q  - coordinate vectors of unknown nodes; q - force density vector for all elements. Thus it is 
necessary to define the force density vector q  which satisfies both equilibrium equations in matrix form and 
relations (10). The vector q is determined by iterative Newton method through the following relation : 

 1 0q q q  (11) 

where initial estimate is 0q . To determine q , nonlinear equations (10) are linearized by means of Taylor series  

within 0q . As a result, the linear equation system relative to q is obtained: 

 ,TG q r  (12) 

Fixed nodes 
Free nodes 

External load P
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where, *
0 /TG g q q - Jacobian matrix; *

0r g q .  In general, linear equations (12) are not determined. So, 
it is necessary to find the minimum norm solution in all infinite solutions. This task is solved by Lagrange's method 
of multipliers which results in:  

 
1Tq G G G r  (13) 

[3,5]. 
Defined coordinates ( ), ( ), ( )x q y q z q  and tensions T Lq in elements are used as an initial estimate in FEM for 

CBSS where, L – diagonal matrix of element’s length. 
In practice, the proposed method includes additional boundary conditions acting on the displacement field. For 

example, some nodes are fixed and all cable and shell elements are pre-tensioned. In this case, the displacement field 
for unfixed nodes is calculated. Further, some of these nodes become free, whereas cable and shell elements pre-
tension values are obtained from the previous solution as an initial estimate and etc. This solution process will 
continue until desired solution with required boundary conditions is achieved.  

It should be noted that the algorithm of what nodes should be unfixed is not formalized and depends on concrete 
CBSS model. 

NUMERICAL EXAMPLE OF PROPOSED METHOD 

Umbrella Reflector Finite Element Model Description 

The proposed method is applied to a large space umbrella reflector (with diameter of 50m). Figure 3 shows its 
finite element model.  

 

 
FIGURE 3. Finite element model of space umbrella reflector. 

Finite element includes reflecting mesh constructed by shell elements without bending stiffness; frontal/rear nets 
are connected by tension ties; framework is eight Y-shaped spokes arranged in central hub and connected by cable 
elements (Fig. 3). Framework spokes members are constructed by shell elements and connected by beam elements, 
as illustrated in Figure 4. 

.  
FIGURE 4. Spoke elements. 
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Reflecting surface shape is the intersection of revolution paraboloid and cylinder (so-called offset paraboloid). 
Cylinder and paraboloid axes are parallel and separated by a clearance value. Offset paraboloid equation could be 
found in [12]. 

Frontal/Rear net Form Calculated by FDM 

Frontal/rear net form is calculated by FDM with Jacobian matrix for specific constraints on tension values [5]. 
Calculated net form and corresponding element tension values are illustrated in Figures 6 (a, b) and 7 (a-d), 

respectively. Accordingly 6 (a), internal frontal net cables should have tensions of 12N. Fixed nodes are considered 
to be the top net cables. 

Obtained solution is used as an initial estimate in calculating displacement field for all unfixed reflector nodes.   

Top view 
(a)  

Side view 
(b) 

 FIGURE 5. Frontal/rear net form calculated by FDM. 

  ( ) Inner cable tension, N   (b) Peripheral cable tension, N  
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        (c) Radial cable tension, N                                                                (d) Tension tie tension, N 

FIGURE 6. Frontal/rear net, tension tie tension calculated by FDM     

Solution Sequence for Reflecting Surface Displacement Field 

The problem was to calculate the displacement field of reflecting surface nodes under following boundary 
conditions: central hub nodes are fixed; shell elements of reflecting surface are pre-tensioned to values of 2N/m; 
pretension value of shortest cable elements which connect A and B and others spokes members are 200N and 100N 
respectively.  Frontal net form and corresponding pre-tension values of its elements are obtained by FDM and used 
as an initial estimate (Fig. 5 and Fig. 6). 

To obtain the first (intermediate) solution, the hub nodes and A and B member nodes were fixed and above-
described pretension values were applied. The corresponding result for displacement field of reflecting surface 
nodes is illustrated in Figure 7. 

 
FIGURE 7. Reflecting surface nodes displacement field when A and B spoke member and central hub nodes are fixed 

(intermediate solution), m 
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To obtain the second (desired) solution, A and B member nodes were unfixed, whereas initial estimate was the 
first solution (i.e. displacement field for nodes, tension values of cable elements and so on).  

The corresponding result for displacement field of reflecting surface nodes for second solution is illustrated in 
Figure 8. 

 
 

FIGURE 8. Reflecting surface nodes displacement field when central hub nodes are fixed only (desired solution), m 
 
This example illustrates the fact that end-displacement of A and B members is more significant in the 

displacement field of reflecting surface nodes. 
The pretension value of the shortest cable elements connecting A and B spoke members significantly influence 

on convergence. If this value less than 10N, the iterative Newton-Raphson process is divergent for above-described 
boundary condition.    

Computation Time for Proposed Example  

For above-described example, the total number of FEM elements is 88060. The number of line elements in FDM 
is 928.   

Computer characteristics are following: processor Intel (R) Core (TM) i7-3960X CPU@ 3.30GHz; RAM is 
32Gb. The number of processors which is used in parallel calculations is 10. 

The FDM iterative process is used until  0.001. 
So, under described number of elements, computer characteristics and FDM calculation accuracy the 

computation time for proposed example is following: 
- The FDM calculation time is 8.37 min 
- The first (intermediate) solution calculation time is 4.31 min 
- The second (desired) solution calculation time is 5.10 min 
So, the total calculation time is 18.18 min. 

CONCLUSION  

This paper presents a calculation method for geometrically non-linear stress-strain state problem for CBSS. The 
main idea is to define the solution sequence via FEM where every next solution includes the previous one as an 
initial estimate. To obtain the initial estimate for first solution, the FDM is used.  
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In practice, this method involves the gradual unfixing of some CBSS element nodes, whereas obtained pre-
tension values for cable and shell elements are obtained from previous solution. However, the drawback is that this 
algorithm has not been formalized and depends on the specific CBSS model.  

This method has been tested in calculating the displacement field of reflecting surface nodes for new large-sized 
umbrella space reflector. 
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