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Abstract. The paper considers topical issues of improving accuracy of data obtained from gas 

well deliverability tests, decreasing the number of test stages and well test time, and reducing 

gas emissions. The aim of the research is to develop the method of adaptive interpretation of 

gas well deliverability tests with resulting IPR curve conducted in gas wells with steady-state 

filtration, which allows obtaining and taking into account additional a priori data on the 

formation pressure and flow coefficients, setting the number of test stages adequate for 

efficient well testing and reducing test time. The present research is based on the previous 

theoretical and practical findings in the spheres of gas well deliverability tests, systems 

analysis, system identification, function optimization and linear algebra. To test the method, 

the authors used the field data of deliverability tests run in the Urengoy gas and condensate 

field, Tyumen Oblast. The authors suggest the method of adaptive interpretation of gas well 

deliverability tests with resulting IPR curve, which is based on the law for gas filtration with 

variables dependent on the number of test stage and account of additional a priori data. The 

suggested method allows defining the estimates of the formation pressure and flow 

coefficients, optimal in terms of preassigned measures of quality, and setting the adequate 

number of test stages  in the course of well testing. The case study of IPR curve data 

processing has indicated that adaptive interpretation provides more accurate estimates on the 

formation pressure and flow coefficients, as well as reduces the number of test stages. 

 

1. Introduction 

Deliverability tests with resulting inflow performance relationship (IPR) curve run in the gas wells 

with steady-state filtration are one of the most informative and common methods well tests to 

characterize the behavior of well and the bottomhole conditions. Currently, the data obtained via 

deliverability tests are interpreted using the methods described in [1-3], which are based on 

Forchheimer binomial equation for gas filtration: 
2 2 2

пл з
p p aq bq    ,     (1) 

where 
2 2

,
пл з

p p  are formation pressure and bottomhole pressure, respectively; a and b- flow coefficients 

dependent on bottomhole zone parameters and bottomhole structure; q - flow rate. The coefficients a 

and b for IPR curve model (1) should be estimated using least square method, with the formation 

pressure being known [2-4]. IPR interpretation based on the model (1) and least square method is 

challengeable as a field method, which is attributed to the following facts: the formation pressure is 

difficult to determine, estimates should be robust and accurate, the number of test stages (a number of 

“cycles” characterized by a stabilized flow when the pressure and flow rate are recorded) is reduced. 
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To ensure that the estimates are accurate and robust, in the work [5] we suggest to interpret the 

IPR curve using integrated IPR curve models with account of additional a priori data on the formation 

pressure and flow coefficients. However, the question is how to provide additional a priori data on the 

formation pressure and flow coefficients and to determine the adequate number of test stages to secure 

preassigned estimate accuracy. 

To overcome the above-mentioned challenges, the method of adaptive interpretation of 

deliverability tests with resulting IPR curve with variable parameters is suggested and investigated. 

The method implies that the parameters depend on the number of test stage and additional a priori data 

on the formation pressure and flow coefficients obtained according to the empirical power law [6] for 

gas filtration are taken into account:  
2 2( )
пл з

q p p        (2) 

where  - productivity index;  - constant factor with theoretical value ranging from 0.5 (turbulent 

flow) to 1.0 (laminar flow). 

It is noteworthy that the empirical law for gas filtration (2) is widely applied in deliverability 

analysis over the years [7-8]. 

2. Models and Algorithms for adaptive interpretation of IPR curve 

The basis to develop algorithms for gas well deliverability test data interpretation is an integrated 

system of IPR curve models (1) with variable parameters dependent on the number of the test stage 

and account of additional a priori data on the formation pressure 
2
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p  and flow coefficients ,n na b  : 
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where * 2

, ,n з n ny p q  – values of squared bottomhole pressures and flow rates obtained at test stage 

number n ; nk – the number of test stages appropriate to secure preassigned estimates accuracy for the 

formation pressure and flow coefficients 2

, , ,пл n n np a b  dependent on number of test stage; , , , ,n n n n    – 

random variables, i.e. error in measurements, recovery data, and estimates of flow coefficients, as well 

as deficiencies of gas filtration models (1),(2) etc. 

The additional data on the formation pressure 
2

,пл n
p  and parameters estimates n  and n  of 

model (2) can be obtained by solving the following optimization problem: 

3* *
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α
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where argmin ( )
x

f x  is the minimum point *x  of the function 

( )f x (
*( ) min ( )

x
f x f x );

2

,
( , )   ,

пл nn n np α  – the vector of estimates; ( )r x – the known function. 

The additional data on flow coefficients ,n na b  can be obtained from the system of linear equations 
2 , 1,n n n n n n nkz a q b q    ,     (5) 

which is the result of grouping models (1),(2) for depression 2 2

пл з
p p  where /n

n
nnz q


 , nq – 

value of flow rate obtained at test stage number n ; , nn  – the optimal estimates obtained by solving 

problem (4). 

The optimal values of squared formation pressure 2

,пл np  and flow coefficients ,n na b  of model 

(3) represented for convenience as a matrix  
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are calculated using the method of adaptive identification by solving optimization problems (7),(8) 
*

0( , ) argmin( ( , ) ( , )),
n

n n n n n a n nh J h J 
α

α β α α β     (7) 
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where * * 2

,( , 1, )n n з ny p n nk  y  – the vector of initial data on squared bottomhole 

pressures; 2( (1, , ), 1, )T

n n n nF q q n nk    – the matrix; 2

1, , 2, 3,( , , )n n пл n n n n np a b     α  – the 

vector of unknown parameters; 
2

2, 3,,( , , )n n n n nплp a b   α – the vector of additional a priori data 

obtained at stage number n; 
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  α β – measures of IPR curve 

model quality; ,(β , 1,3)n j n j β  – vector of control parameters defining the importance (weight) of 

additional a priori data , , 1,3j n j  ; 0 , a  – the known functions; 

((( ) / ), 1, 1, 1, )n nn i h i nk n nk     – weighting functions with decay parameter nh  to secure adaptive 

identification and interpretation 1 2 1 2( ( ) ( ), )x x x x   ; ,j nkr  – the adjustment parameter for 

additional data nα . 

The solution on the time for deliverability test with resulting IPR curve to be completed can be 

taken via visual analysis of graph (see figures 2–4) or using the criterion for estimates stabilization, 

where nk is such a test stage n that  
* * * * * * * * *

, , , 1 , 1 1 , ,( (β , ) (β , )) / (β , ) , 1,3, 1,2,3,...j n j n n j n j n n j n j n n jh h h j n           (9) 

is a valid inequality, where j is preassigned accuracy. 

The algorithm given below represents the method of adaptive interpretation of IPR curve with 

determination of additional a priori data and flow coefficients: 

1. Forming vector ny and matrix nF (6). 

2. Defining the vector of additional data 
2

, 2, 3,( , , )
пл nn n n n na bp    α  by solving problem (4) 

and system of linear equations (5). 

3. Selecting measures of model (6) quality 0 ( , ), ( , )k k a k kJ h Jα α β . 

4. Solving problems (7), (8) using the appropriate method of function optimization. 

5. Checking condition (9): if the condition is fulfilled, the test is completed; if condition (9) fails 

to be fulfilled, the next test stage n+1 is arranged and one should start new research with step 1 of the 

algorithm. 

3. Results of IPR curve interpretation for gas wells. 

The results of a case study of deliverability test with resulting IPR curve run in wells 1 and 2 of the 

Urengoy gas and condensate field are given in figures 1–4 and tables 1, 2. 

For example, figure 1 shows the initial data for IPR curves for wells 1 and 2, with eight and 

seven test stages, respectively. 
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Figure 1. Initial data for IPR curves for wells 1 and 

2.  

Figure 2. Formation pressure estimates for 

well 1. 

 

Figures 2–4 show the estimates of formation pressure and flow coefficients of well 1, which are 

obtained using the following techniques: 

1. the method of adaptive interpretation (MAI) (7) with quadratic measures of quality 
2

0( ) ( )ax x x    by solving the system of linear equations when ,( , 1,3)j nkr j nkr  and 

*

,β β , 1,3j n n j   [9-10]. 

* * * * * * *( ( ) β ) (β , ) ( ( ) β ),T T
nn n n n n n n n n n n n nF W h F h F W h   nI α y kr α    (10) 

where the estimates of control parameter *βn  and decay parameter *

nh  are defined by solving problem 

(8) using the downhill simplex method [11]; * *( ) (exp(( ) / ), 1, 1)n nW h diag n i h i nk    - diagonal 

matrix of weighting function values; 

2. the regularized least squares method (RLSM) from (10), with 0n α .  

  

Figure 3. Estimates of flow coefficients a in 

well 1. 

Figure 4. Estimates of flow coefficients b in 

well 1. 

 

Table 1 shows the estimates of flow coefficients and formation pressure in well 2. 

Table 2 gives the estimates of the formation pressure 
2

1, ,
,n пл n

p  and flow 

coefficients 2, 3,,n n n na b    of wells 1 and 2, which are used as additional data in (3) and obtained 

by solving optimization problem (4) using Gauss-Newton method with r(x)=x
2
 [9-10] and the system 

of linear equations (5). 
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Table 1. Flow coefficients and formation pressure estimates. 

 

Number of 

the test 

stage (n) 

Method 

Flow coefficient estimate  Formation pressure 

estimate 
* * * *

1, ( , )пл n n np h  , 

atm 

** * *

2, ( , )n n na h  , 

atm
2
/(thousand 

m
3
/day) 

** * *

3, ( , )n n nb h  , 

atm
2
/(thousand 

m
3
/day)2 

2 
MAI 2.25 0.0084 294.82 

RLSM    

3 
MAI 1.47 0.0111 294.97 

RLSM -8.91 0.0227 291.22 

4 
MAI 1.51 0.0104 294.79 

RLSM 2.29 0.0096 295.10 

5 
MAI 9.59 0.0022 297.91 

RLSM 8.97 0.0027 297.63 

6 
MAI 9.27 0.0019 297.49 

RLSM 12.10 -0.0003 298.89 

7 
MAI 9.07 0.0019 297.36 

RLSM 11.69 -0.0001 298.65 

8 
MAI 9.12 0.0019 297.30 

RLSM 12.58 -0.0008 299.04 

 

Table 2. Additional data. 

 

Number 

of the test 

stage (n) 

Well 

Formation 

pressure 

,пл n
p , atm 

Flow coefficient Model parameter (2) 

a , atm2
/(thousand 

m
3
/day) 

b , atm2
/(thousand 

m
3
/day)2 

 , 

(thousand 

m
3
/day)/atm

2 

 , d e 

2 
1 295.30 0.06 0.00775 10.95 0.5038 

2 294.20 0.30 0.01093 8.10 0.5176 

3 
1 295.30 0.001 0.00787 11.19 0.5009 

2 294.40 -0.12 0.01286 8.19 0.5107 

4 
1 299.00 8.48 -0.00006 0.13 0.9929 

2 294.30 0.30 0.01159 8.56 0.5070 

5 
1 299.00 8.38 0.00009 0.13 0.9894 

2 295.10 3.37 0.00751 3.13 0.6206 

6 
1 298.40 7.27 0.00102 0.29 0.9013 

2 296.30 6.86 0.00376 0.81 0.7672 

7 
1 299.50 9.88 -0.00106 0.12 0.9947 

2 296.50 7.34 0.00325 0.63 0.7960 

8 
1      

2 296.90 8.31 0.00247 0.44 0.8323 
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 It is noteworthy that when the coefficient   of model (2) approaches 1, the flow coefficient b 

of model (1) approaches 0 (the laminar flow in the well). 

 As can be seen in figures 2–4 and table 1, the suggested method of adaptive interpretation 

with account of additional data allows obtaining more accurate estimates of the formation pressure and 

flow coefficients with less amount of field data compared to the method of least squares. For example, 

for the adaptive interpretation method three test stages are enough (see figures 2–4 and table 1). 

4. Conclusion 
To overcome the challenges of interpreting deliverability tests with resulting IPR curve of gas wells, 

the method of adaptive interpretation with account of additional a priori data has been suggested. This 

method allows: 

1. Obtaining additional a priori data on the formation pressure and flow coefficients. 

2. Defining optimal, in terms of preassigned measures of quality, estimates of the formation 

pressure and flow coefficients within the period of test time. 

3. Setting the number of test stages adequate for efficient well testing. 

The case study of IPR curve interpretation for two wells of the Urengoy gas and condensate 

field has indicated that adaptive interpretation provides robust and more accurate estimates of the 

formation pressure and flow coefficients, as well as allows reducing the number of test stages. 
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