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Abstract. The new method for combining semisoft thresholding rules 
during wavelet-based data compression of images with multiplicative noise 
is suggested. The method chooses the best thresholding rule and the 
threshold value using the proposed criteria which provide the best non-
linear approximations and take into consideration errors of quantization. 
The results of computer modeling have shown that the suggested method 
provides relatively good image quality after restoration in the sense of 
some criteria such as PSNR, SSIM, etc.  

1 Introduction 

Images which are registered from different sources and which have to be transferred or 
archived can be distorted by specific noises having a multiplicative character. In many 
cases, video sources and data links add their own noises during image formation and 
transferring. For example, we can discuss about synthetic aperture radar (SAR) images with 
multiplicative noise known as speckle, infrared devices with fixed pattern noise (FPN) like 
unstable photo element’s voltage sensitivity, etc. There are a lot of methods and algorithms 
invented in last decades trying to effectively filter and/or compress noisy images. In the 
most cases, the tasks of filtering and compression are decided separately. Therefore, 
filtering and compression algorithms are not harmonized, that leads to new distortions and 
artifacts onto the images restored after compression. Moreover, being theoretically focused 
on an additive Gaussian noise model, any filtering algorithm inevitably leads to 
unsatisfactory results.  

The good idea is to combine filtering and compression within one and same procedures 
of noisy image processing. The main decisions which we have chosen for this overview are 
relatively old and can be grouped into three sets. The first set of methods presented by 
works [1, 2] was developed using the Rissanen’s principle of minimal description length 
(MDL) [3]. Here, the final compression ratio is determined by the achieved maximal 
quality of the decompressed image. The second set of methods presented by works [4, 5] 
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exploits the idea of so-called optimal operation point (OOP) which is the compression ratio 
or bit rate (BR) measured in bit per pixel (bpp), when the maximal peak-to-signal noise 
ratio (PSNR) is achieved. Existence of OOP can be explained by existence of so-called 
“dead zone”, an interval of quantization near zero, size of which is changed in dependency 
on the given bit rate for any codec. Again, OOP provides the desired quality of compressed 
images but does not guarantee the necessary bit rate for transmission through channels with 
fixed bandwidths. The third set of methods presented by our works [6, 7] and other works is 
based on forming an image of high quality under the given bit rate (quota of bits).  

The most of mentioned works uses wavelet transformation which allows consolidating 
filtering and compression by thresholding techniques. Usually, so-called fast discrete 
wavelet transform (FWT) [8, 9] is the base of many suggested methods and algorithms. 
This wavelet transform in the form of dyadic decomposition has been applied to image 
processing by S.Mallat [8]. The image is decomposed into several high-frequency pseudo 
images (subbands) containing wavelet coefficients of details in horizontal, vertical and 
diagonal orientations with increasing scale. Different thresholding rules are the bases of 
wavelet filtering methods [10, 11]. There are some popular shrinkage policies: semisoft, 
non-negative and n-degree garrote and hyperbole thresholding [10]. Nevertheless, semisoft 
thresholding where hard, soft and Vidacovic thresholding rules are related is the most 
popular in practice because the one parameter (the threshold value) is needed to calculate 
only. Otherwise, non-negative garrote rule [10], for instance, requires two parameters to be 
estimated that gives an additional optimization problem. Concentrating on semisoft 
thresholding rules in this paper, we can note that the effectiveness of filtering for any 
thresholding rule depends on different image features such as texture, type and intensity of 
noise, spatial and radiometric resolutions, etc. In other words, each of thresholding rules 
can win in the contest for the best quality of the filtered image. Moreover, the situation 
becomes unpredictable when the noised image is undergone by wavelet-based compression 
that gives errors of so-called non-linear approximation and quantization [12]. Therefore, 
this paper comprises an attempt to develop the theoretical base to fuse different semisoft 
thresholding rules during data compression of noisy images that provides the fully 
automatic scheme of choosing the best thresholding rule and the corresponding threshold 
value. 

This paper consists of five sections. After this introduction (Section 1), Section 2 
describes the problem definition. Section 3 contains the obtained criteria for different 
thresholding rules and discusses what to expect from the fusion of the thresholding rules. 
The results of computer modeling and comparison are represented in Section 4. Conclusion 
remarks are reflected in Section 5.  

2 Problem definition 
Let us assume that the compression is subjected to the observed signal Y, which is the 
projection of the unknown original image X distorted by multiplicative noise Z with unity 

mean and variance 2
Z

σ : 

XZY = .     (1) 
The noise Z may have different probability density function (pdf), for instance, an 

exponential pdf for speckle in SAR images; normally distributed for FPN in infrared 
sensors, etc.  
Multiscale analysis provides a decomposition of a noisy signal (1) in the form of FWT for a 
given number of levels Q. Because the wavelet transform is the result of successive 
convolutions, we define an operator [ ]jW  that generates the wavelet coefficients at each 
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level j, 1,...,j Q= . Then, the wavelet decomposition of a noisy signal with a fixed basis may 
be represented as follows: 

[ j] [ ] [ ] [ ]

[ ] [ ]

( 1)
,

j j j
Y

j j
c X

W W Y W XZ W X W X Z
W X W XZ W Wξ

= = = + −

= + = +
  (2) 

where )(, ][][
c

jj
X XZWWXWW == ξ  are centered and uncorrelated random processes  

.0][][][
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][][ ==

==
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X

X
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WEWE

ξ
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Therefore, in wavelet domain, the multiplicative model (1) becomes the additive one 
(2).  

Any wavelet coefficient can be represented as 
][][][ ij

X
j

Y iii
www ξ+=  , )(,...,1 jIi = , 1,...,j Q= ,  (3) 

here )( jI  is the quantity of wavelet coefficients at each level j, Qj ,...,1= , and the noise in 
wavelet coefficients can be shown as: 

i
j

w
j ew
i

⋅= ][][
ξ

σξ ,       

where 1≤ie , )( jIi∈∀ , 0][ >j
wξ

σ , Qj ,...,1= , and here, we consider conditionally that 

ie  is Gaussian noise with zero mean, and 
2][ j

wξ
σ  stands for its variances which are 

unknown, Qj ,...,1= . Therefore, we complicated the model for noise which is used for 
computer modeling and reflects heterogeneous features of an image in FWT subbands. 
There are some works where different hypotheses about noisy wavelet coefficients 
distribution are suggested. The generalized Gaussian distribution has been very well 
adopted in imagery on wavelets (see, e.g., [13]). Here, we consider that the high-pass 
filtering leads to an approximately symmetrical form of the distribution for wavelet 
coefficients. Hence, the properties of multiplicative noise in spatial domain are changed in 
such manner that we can use the additive white noise model in wavelet domain. This is our 
lonely presumption which has no the strong mathematical background. 

Thus, the problem is to perform data compression of a noisy signal (1) by encoding the 
wavelet coefficients (3) in such way that we could improve and estimate a quality of the 
processed noised image. It can be done by use of mean square error (MSE) criterion in the 
form of the Euclidean norm which can be written as follows 

{ } min 
2

ˆ →− XX WWE ,    (4) 

where 
XW ˆ  is the wavelet coefficients of the restored (after compression) image. 

It is because the original signal is distorted, then the coefficients 
XW ˆ  should be 

considered as estimators of the wavelet coefficients for the original signal X after 
processing of the noisy wavelet coefficients 

YW . It is shown in the papers [8, 9] that the 
error of restoration (4), which is computed in the wavelet domain, is equivalent to the 
averaged square of the norm of the error in the spatial domain: 

{ }2
ˆ

2ˆ
XX WWEXXE −=

⎭⎬
⎫

⎩⎨
⎧ −     (5) 

Let us suppose that the noisy signal (1) is represented by I discrete samples (pixels); in 
the case of FWT, it gives the same quantity of the wavelet coefficients I. Then, after 
compression, we have M so-called significant wavelet coefficients only ( IM < ) which are 
undergone by quantization before statistical encoding. If we ignore the possible small losses 
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of the signal energy during encoding, then the estimators of the wavelet coefficients can be 
represented as follows: 

⎩
⎨
⎧

+>
≤=

,1if,0
,if,

ˆ
Mk

Mkww k

k

Y
X

 ],...,1[ Ik∈∀ ,   (6) 

where the brackets ⋅  denote the operation of uniform quantization (uq). To calculate the 
total error caused by the approximation and quantization, we first consider the sum of 
squares of the errors in estimating the wavelet coefficients: 
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  (7) 

For the sake of notation simplicity, we enter the next terms:  

∑
=

=
I

i
Yi

w
I 1

22 1σ  is the variance calculated for all of wavelet coefficients; 

∑
=

=
M

i
Yi

w
M 1

22 1~σ  is the variance of the thresholded (significant) wavelet coefficients, 

ε=IM / ; 

∑
=

=
I

i
W i

w
I 1

22 1
ξξ

σ  is the variance of wavelet-coefficients for noise with zero mean; 

∑
=

=
M

i
iuquq M 1

22 1 σσ  is the quantization variance for M significant wavelet-coefficients.  

Then, the formula for the MSE criterion can be written as follows 

∑
=

++−=−=
⎭
⎬
⎫

⎩
⎨
⎧ −

I

i
uqWXXXX ii

ww
I

WWE
1

222222
ˆ ,~)ˆ(1 εσσσεσ

ξ
   (8) 

It follows from equality 8 that minimizing the value  
2

ˆ ⎭⎬
⎫

⎩⎨
⎧ − XX WWE  is equivalent to 

maximizing the value ( )22~
uqσσε − . In order to obtain the best MSE, it is necessary to 

provide the maximal variance of the significant wavelet coefficients (because it gives the 
good signal approximation [8]) and the minimal variance of quantization errors. These 
requirements are contradictory, because the larger M of the significant wavelet coefficients 
increases the total quantization error simultaneously. On the other hand, we can control 
both these components in equality 8 by different methods including thresholding 
techniques.  

Therefore, our problem can be described in the terms of the approximation theory where 
any thresholding rule can be considered as a procedure of non-linear approximation of the 
noised signal (image) when the maximal value ( )22~

uqσσε −  is achieved. Having different 
thresholding rules, we have a nice opportunity to choose the best rule because we obtain 
different signal approximations. Therefore, the problem converges to the search of the 
generalized method suitable to estimate the effectiveness of any thresholding rule. Our 
solution placed below has been derived for so-called semisoft thresholding rules which are 
described in Section 3. For computer modeling and comparison, the quality of the restored 
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after compression image is estimated by several criteria such as peak signal-to-noise ratio 
(PSNR) and structural similarity index (SSIM). 

3 The fusion of thresholding rules 
The main idea of our method is to iteratively refine a non-linear approximation of the 
noised image using so-called coherent structures which are the components of the image 
and which are strongly correlated with a chosen wavelet basis [15]. Having a variance 2

Z
σ , 

noise Z in Y can be determined as components of the decomposed image 
k

wξ , Ik ,...,1= , 
that have no a strong correlation with the given basis. If I is relatively large then there is the 
probability up to 1 that [8, 14]  

I
Z

ZIk

I
I

I
I

Z

w
k ρ

σ
σξ

==≤≤≤ ln2ln2max1    (9) 

for any orthonormal wavelet basis. The parameter Iρ  can be considered as the supreme 
estimator of the correlation coefficient for correlation between Gaussian noise and any 
given wavelet basis. It follows from equality 9 that this estimator does not depend on noise 
variance. It has been experimentally proven by our experiments [6] that the theoretical 
value of Iρ  is also the highest asymptote of the correlation coefficients for correlation 
between Daubechies wavelets, symmlets, some biorthogonal wavelets, on the one side, and, 
on the other side, noises having different pdfs and their combinations, e.g., log-normal, 
exponential, Gamma-distributed, etc.  

It is known from the theory of wavelets [8, 14] that the nonlinear approximation of any 
signal decomposed by wavelet transform is referred as inverse wavelet transform W-1 for 
the first (significant) M wavelet coefficients after their sorting  

{ }∑
=

−=
M

k
Yk

wWX
1

1ˆ .     (10) 

where  

1+
≥

kk YY ww ,      ],...,1[ Ik∈∀ .   (11) 

The residual image MY  can be computed as the difference between the input image and 
the pseudo image obtained by means of the inverse wavelet transform for the coherent 
structures  

{ } { }∑∑
+=

−

=

− =−=
I

Mk
Y

M

k
YM kk

wWwWYY
1

1

1

1 ,   (12) 

The residual image MY  can not be recognized as a noise if the following inequality  

2

1

2

2

2 )( MII

Mk
Y

Y
M
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M

w

w
Y −

+=

>=

∑
ρρ

    (13) 

is true. Not taking into consideration the quantization errors, the estimator X̂  of the 
original image is the sum of M coherent structures (10).  

Hard thresholding. The equality 13 shows that pursuit of the coherent structures looks 
like hard thresholding (see Figure 1, a) of the wavelet coefficients using the threshold [8, 
10, 14] 

∑
+=

−=
I

Mk
YMI k

w
1

2
ρτ .    (14) 
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Therefore, the threshold value τ is automatically set by any change in the quantity M of 
the significant wavelet coefficients. Taking into consideration equality 8 and the following 
conclusion from Section 2, we can derive the method of the noised image processing based 
on hard thresholding:  

2 2( ) ( ) maxuq
M

f M ε σ σ= − →�     (15) 

( )222

1

222 ~σεσρρ −=≥∀ −
+=

− ∑ Iww MI

I

Mi
YMIY ii

.  (16) 

Let the wavelet-coefficients of the noised image be arranged according to equality (11). 
Then, the proposed algorithm using the matching pursuit can be represented as follows [6].  
1. Set 1−= IM  (initializing). 
2. Compute the cumulative sum of wavelet-coefficient squares and, according to (14) 

calculate the threshold value for the given correlation coefficient MI −ρ . 
3. Compute the new (corrected) value M of the significant wavelet coefficients from the 

inequality (16).  
4. Check: is the maximal value of the cost function (15) achieved?  
5. If the cost function (15) has the maximal value then calculations are finished. 

Otherwise, go to the step 2.  
It is possible to use different rules to finish calculations when the maximum of the cost 

function (15) is achieved, for example 
δ≤− − )()( )1()( nn MfMf , 

where δ is the reasonable error of calculations showing the accuracy of the algorithm; 
)(nM  is the estimator of the quantity of the significant wavelet coefficients obtained at the 

iteration with number n, n=2, 3, ... 
Because the algorithm presented by equalities 15 and 16 is based on the hard 

thresholding rule, then the estimators of the processed wavelet coefficients are 
automatically obtained as 

ii YX ww =ˆ
, 1, ,i M= … . 

Soft thresholding. During soft thresholding (see Figure 1,b), the wavelet coefficients are 
also set to zero if their values are below the threshold, but simultaneously, there is a 
reduction of the details (the wavelet coefficients of high-frequency subbands of the FWT) 
to the threshold value 

MYw=τ  [8, 10, 11]: 

⎪⎩
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In practice, the processing scheme in the form (17) is applied to the details only; while 
the wavelet coefficients of the approximation remain unchanged. Therefore, we need to 
analyze the three components. 
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where t is the number of the first-ordered wavelet coefficients corresponding the 
approximation. The third (last) term in equality 18 represents the error which is inevitably 
appeared due to the thresholding of the wavelet coefficients. We obtain for the first two 
summands in equality 18: 

  
 

  

 
DOI: 10.1051/01072 (2016) matecconf/2016MATEC Web of Conferences 790107

2016

,

IME T &

9 72

6



( ) ( ) ( )

( )
( ) ,)(~1

)(sign1

111

222
uq

2

1

2

22

1

2

1

2

1

2
ˆ

1

2
ˆ

MMii

iMiii

iiiiiii

YWW

M

ti
YYY

Wкв

M

ti
YYYY

t

i
YY

M

ti
XX

t

i
XX

w
I

tMwww
I

I
t

I
twwwww

I

www
I

ww
I

ww
I

θεεσεσσ

σσ

ξξ

ξξ

ξ

−++
−

+−−

++=−−−

+−−=−+−

∑

∑

∑∑∑

+=

+=

=+==

  (19) 

where 
I
t

=θ  is the coefficient showing how many wavelet coefficients of the 

approximation are in the total quantity of the wavelet coefficients. We assumed during our 
derivation of equality 19 that 01

1
uq ≈∑

+=

M

ti
iYM

w
I

σ  because the numbers of quantization errors 

2
Δ

≤iuqσ  with different signs are equiprobably ( 0uq =σ ) and 
iii YYY www )(sign=  

(Δ is an interval of quantization). Finally, the equality 8 is modified for the case of soft 
thresholding: 

{ } 222
uq

222
ˆ )(~

MYWXX wWWE θεσεσσεσ
ξ

−+++−=− .   (20) 

Hence, we need to also modify the method of processing based on equality 15 and 
equality 16: 
 

max)~()()~()( 2222
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The algorithm corresponding to equalities 21 and 22 contains the same steps with some 
modifications as it is for the case of hard thresholding. The estimators of the processed 
wavelet coefficients can be calculated as follows: 

2 2
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Vidacovic thresholding. The thresholding function derived by Vidacovic [10] comprises 
some “medium” variant of semisoft thresholding as it can be seen from Figure 1, c: 
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We obtain after some algebra: 
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The corresponding algorithm for noisy image processing can be also described by two 
equations: 
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The estimators of the processed wavelet coefficients can be found as follows: 

2 2 2 2
ˆ

, 1, , ,

sign( ) ( ) , 1, , ,

0, 1, , .

i

i ii

Y

Y Y I MX

w i t

w w w I i t M

i M I

ρ σ εσ−

⎧ =
⎪
⎪

= − − = +⎨
⎪
⎪ = +
⎩

…

� …

…

 (28) 

 

 
   

Figure 1. Thresholding rules: hard (a), soft (b), and Vidacovic (c). 
 

Fusion of thresholding rules. In order to fuse different thresholding rules, we need to 
perform some formalization. Suppose that there is a set of q thresholding algorithms 
{ }qAAA ,,, 21 Κ , which can search for coherent structures in the chosen wavelet basis. Let 
the results of executing the corresponding algorithms be the values of the objective 
functions { }q

iii Mf 1),( =
 and the set of the corresponding values { }qMMM ,,, 21 Κ . Then, to 

select the best coherent structures, we must use the criterion: 
{ }*

1,...,
( ) arg max ( )opt i ii i q

M M A f M
=

= = .  (29) 

Therefore, equality 29 determines the best thresholding algorithm *iA  (or/and the 
corresponding thresholding rule).  

The obtained wavelet coefficients are sent to any wavelet coder where they are 
statistically encoded and transferred. The restored image can be considered as the sum of 
the coherent structures (in the form of equality 10) which are restored by the corresponding 
decoder on the side of recipient or from the database (in the case of archiving).  

Our expectations. In the case of data compression of noisy images, we have too many 
factors influencing on the final result. Therefore, we need to determine the strategy of using 
the suggested method which can answer, by our opinion, on the following two important 
questions:  

1) What, in average, have we to expect from the fusion of thresholding rules? 
2) How “to tune” the suggested method for practical applications, when, for example, 

bandwidths of data links are limited? 
In order to obtain an answer for the first question, we should remind that there were a 

lot of theoretical works devoting to wavelet shrinkage. In last decades, Mallat, Coifman, 
DeVore, Donoho, Johnston and their collaborators explored statistical optimality and risks 
of wavelet shrinkage for cases of signal processing, approximation, and statistics (see, e.g., 
[8, 10, 15, 16]).  

These works help to find out the high estimators of risks for any thresholding rules; 
however, it does not allow us to compare or choose the best thresholding rule in the given 
cases.  
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On the other side, there were a lot of works containing the results of practical applying 
of the semisoft thresholdiong rules to different fields of imagery. Unfortunately, in those 
works, comparison is limited by types of images and noises (see, e.g. [17, 18]). If we take 
this way for proving effectiveness of the suggested method, then we can put in the difficult 
situation of endless comparing by pairs, for example, hard and soft thresholding under 
different bitrates, etc. 

Nevertheless, here, we try to give our (maybe, “too engineering”) answer for the first 
question; our thoughts are not controversial to the main theoretical results.  

When we consider a noisy image, then the behavior of the ordered wavelet coefficients 
(equality 11) is changed; we observe a difference between two curves for small wavelet 
coefficients (details of the FWT) (see Figure 2). Differences depend on intensity of noise. It 
means that different noise variances lead to different threshold values; however, it does not 
mean that any thresholding rule will be a winner in the given case. Figure 3 (in the form of 
sketch for the case of a strong noise) shows some different situations which can be 
encountered during modification of wavelet coefficients in accordance with thresholding 
rules (14), (17), and (24). These situations have the following explanations.  

If the input image (1) is relatively clear (noise is too small) then we observe that the 
quantity of undistorted wavelet coefficients with small amplitudes (details) is relatively 

large; hence, we can choose the small threshold value 
MYw  to set these coefficients to zero 

for compression. It is obviously, that the hard threshodilng rule has to win because no 
modification is done in the residual wavelet coefficients. In the case of noisy image, the 
situation is not so obvious because the dynamic rate of wavelet coefficients related to 
details is increased due to noise; hence, the threshold value should be increased. If we 
register the case of a strong noise, then, we consider, the soft trhesholding rule should be a 
winner because the residual distorted wavelet coefficients are changed (smoothed). It can 
be noted from Figure 3, where “soft” modification sets the part of the significant wavelet 
coefficients (the residual details) to be close to “an ideal”, high frequency noise-free 
coefficients. Also, as it seen from Figure 3, in general, the Vidacovic thresholding rule 
takes an intermediate position between soft and hard threshoding rules. It means that the 
Vidacovic thresholding rule modifies wavelet coefficients related to middle frequencies of 
the signal. Hence, we cannot predict all possible results. 

Therefore, we should go to the second question because error of quantization depends 
also on available bit rate for data links or the given quota of bits for image archiving. The 
problem is that the interval of uniform quantization depends on both the given bit rate and 
the dynamic rate of the residual wavelet coefficients: 

( ) MR
YY

C

M
ww /22

1

−⋅−=Δ ,    (30) 

where CR  is the given budget of bits; 
1Yw  is the first coefficient from the ordered wavelet 

coefficients having the maximal value. In the cases of low bitrates ( CR <I), there are 
possibilities to tune a full scheme of noisy image compression if to determine so-called 
optimal operation point (OOP) [4, 5] of a coder. It has also been experimentally proved by 
the author for a case of multiplicative noise that any coder has such bit rate (i.e. OOP) 
where the maximal peak signal-to-noise ratio (PSNR) is achieved.  

Therefore, our experiments have to show that the suggested method chooses different 
thresholding rules and OOPs in dependency on noise variance and image textures.  
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Figure 2. The curves of the ordered wavelet coefficients of the test mage sized 512×512 with added 

noise: 
][ j

wξ
σ =23.02 (1), 39.18 (2), and 0 (3); Qj ,...,1= , Q=3. 

 

 
Figure 3. The sketch showing curves of the ordered wavelet coefficients for noise-free image (1), 
after soft (2), Vidacovic (3), hard (4) thresholding, and for an image distorted by a strong noise (5). 

4 Results of modeling 

For our experiments, we formed the library of test images containing 25 reference images 
which have been taken from the library described in [20]. The initial formats all of images 
were converted into the gray scale format with 8 bpp. Moreover, then, all of the converted 
images were divided into two groups with homogeneous and heterogeneous textures. The 
type of texture was determined by use of so-called variation coefficients which can serve as 
indicators of homogeneity within the given window [17]. Image is considered to be 
homogeneous if the quantity of points (pixels) from the set of homogeneous points is more 
than the reasonable threshold. We set this threshold value to 60 %.  

We used the FWT of three levels (Q=3) based on the wavelet CDF 9.7 (Cohen-
Daubechies-Feauveau). To simulate a multiplicative noise, the random number generators 
were applied to model speckle-noise with exponential pdf and unity mean. The variance of 
noise was a subject to change during experiments. In order to get a completely full 
processing of noised images, we used SPIHT (Set Partitioning In Hierarchical Trees) coder 
software [19] which has been modified to regulate the dead zone in dependency of the 
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results obtained by the chosen thresholding rule (equality 30). The bit rate value IRC /  
was changed within low bitrates (up to 1 bpp) with the step 0.01 bpp in order to find out the 
OOP.  

The results of computer modeling are represented in Table 1. The table contains results 
in the form of different characteristics such as PSNR, SSIM [21] and OOP. The results 
obtained by the suggested method (i.e., the chosen thresholding rule) are marked. We 
compared the obtained results with “not-chosen” thresholding rules and SURE and Oracle 
thresholding rules under the same OOP. The SURE thresholding algorithm is described in 
[8]. “An ideal denoising method” was represented by the principle of “Oracle” when the 
threshold value is calculated if the original (non-noised) wavelet coefficients are known [8, 
16]. 

Some distorted and restored after compression images with the obtained optimal 
thresholding rule and bit rate are shown on Figures 4–11. One can see from Table 1 and 
Figures 4–11 that the suggested method provides better image enhancement both 
numerically and visually.  

In spite that there are other thresholding rules, we do not place here results of 
comparison with these rules because it is difficult to find out any statistical lows during pair 
comparing. Moreover, we understand that our method cannot be a winner in many cases if 
to compare to powerful and very complex methods as [1, 2, 6, 7, 13, 14, 22]. 

 
Table 1 The results of comparison. 

Image Homogeneous Heterogeneous 
Thresholding 

rule 
][ j

wξ
σ  17.43 28.56 57.76 13.82 38.23 54.46 

Hard 
thresholding 

PSNR, dB 32.41 27.88 22.32 30.34 25.88 20.44 
SSIM 0.9834 0.7366 0.5832 0.9234 0.6646 0.4832 

OOP, bpp 0.52 0.34 0.23 0.43 0.26 0.14 

Soft thresholding 
PSNR, dB 28.67 29.27 26.38 26.45 27.72 24.82 

SSIM 0.7845 0.8734 0.6745 0.6445 0.6941 0.6126 
OOP, bpp 0.52 0.34 0.23 0.43 0.26 0.14 

Vidacovic 
thresholding 

PSNR, dB 29.73 30.32 23.75 27.35 28.24 21.23 
SSIM 0.8341 0.9231 0.6154 0.6843 0.8137 0.5247 

OOP, bpp 0.52 0.34 0.23 0.43 0.26 0.14 

SURE 
PSNR, dB 30.36 28.21 24.21 28.64 26.93 22.84 

SSIM 0.8874 0.8122 0.6327 0.8341 0.7122 0.5878 
OOP, bpp 0.52 0.34 0.23 0.43 0.26 0.14 

Oracle 
PSNR, dB 32.68 31.32 27.12 31.81 29.12 25.22 

SSIM 0.9882 0.9521 0.6823 0.9327 0.8716 0.6445 
OOP, bpp 0.52 0.34 0.23 0.43 0.26 0.14 
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Figure 4. Original (noise-free) image. Figure 5. Distorted image with 
][ j

wξ
σ =18.4. 

Figure 6. Distorted image with 
][ j

wξ
σ =27.8. Figure 7. Distorted image with 

][ j
wξ

σ =42.3. 
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Figure 8. Restored image from Figure 5 (hard 
thresholding, OOP 0.43 bpp). 

Figure 9. Restored image from Figure 6 
(Vidacovic thresholding, OOP 0.27 bpp). 

 

 
Figure 10. Restored image from Figure7 
(soft thresholding, OOP 0.12 bpp). 

Figure 11. Restored image from Figure7 by 
SURE, OOP 0.12 bpp. 

5 Conclusion 
The problem of noisy image compression is very complex; and, certainly, the suggested 
method does not pretended to decide related tasks in full. The main aim of this paper is to 
demonstrate that there are possibilities to build more flexible schemes of noisy image 
processing. The suggested method can be expanded by means including other thresholding 
rules, e.g. non-negative and n-degree garrote. However, it will require using a multi-criteria 
problem definition.  

Because the suggested method exploits the idea of pursuit the coherent structures, than 
it leads to relatively high computational and timing expenditures. We estimate the 
complexity of our method as 4(3 log )O I I  operations taking into consideration that we have 
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three thresholding rules and choosing the quantity M of the significant wavelet coefficients 
is similar to search of the best path during wavelet package processing. In spite, we 
consider that there are some possibilities to decrease these expenditures due to using so-
called pipe-line and unrolling loop methods of programming to seek the maxima of cost 
functions (15), (21), and (26) in parallel. It allows us to promote this method for onboard 
mage processing using FPGA implementations. 
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