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Abstract 

One of the primary products of hydrodewaxing process is stable gasoline, which is characterized by low octane number on the 
one hand. On the other hand, it contains a significant amount of iso-paraffins (on average 45 % wt.) and naphthenes (on average 
25 % wt.), which are reagents in the naphtha catalytic reforming process primary reactions. Feasibility of stable gasoline obtained 
by means of diesel fuel catalytic hydrodewaxing process involving into the processing at the naphtha catalytic reforming unit has 
been estimated using naphtha catalytic reforming mathematical model. Technological scheme of stable gasoline from 
hydrodewaxing unit supply to the reforming unit is presented. Naphtha catalytic reforming and diesel fuels hydrodewaxing 
processes resource efficiency increases by 15–20 % due to rise in catalytic reforming feed source.    
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1. Introduction 
 

The most complex problems that occur whereby aspiration to the modern motor fuels quality standards are 
required gasoline octane number achievement1,2 and low sulfur and ultra low sulfur diesel distillates production3,4 
with improved low temperature characteristics5,6. 

One of the contemporary high quality diesel fuels production technologies is straight run diesel cuts catalytic 
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hydrodewaxing7-9. Besides, a considerable amount of gasoline fraction is received in the hydrodewaxing process10. 
This gasoline fraction is characterized by low octane number, but contains a great deal of iso-paraffins (on average 
45 %) and naphthenes (on average 25 %), which are reagents in the naphtha catalytic reforming process primary 
reactions. In order to increase stable gasoline octane number and catalytic reforming unit feed source it can be 
directed to the further refining in the reforming process. 

The purpose of the current work is reasonability of involvement of stable gasoline which is obtained by diesel 
fuel catalytic hydrodewaxing into the processing at the naphtha catalytic reforming unit estimation by means of 
naphtha catalytic reforming mathematical model. 

 
2. Experimental part 

 
When gasoline fraction from hydrodewaxing unit is involved into the catalytic reforming unit feed flow, the feed 

composition changes significantly. With a view to proof the reasonability of stable gasoline from hydrodewaxing 
unit using as the catalytic reforming raw materials, calculations of feed composition changing influence on key 
catalytic reforming parameters have been carried out via the use of the catalytic reforming mathematical model11. 
Initial data for calculations is presented in Table 1. 

Table 1. Initial data for calculations 
 

Technological parameter Value 

Hydrogen containing gas volumetric flow rate, m3/h 94000 

Feed volumetric flow rate, m3/h 93 

Pressure in reactor R-2, atm 21.90 

Pressure in reactor R-3, atm 20.80 

Pressure in reactor R-4, atm 20.30 

Temperature in reactor R-2, °С 503 

Temperature in reactor R-3, °С 500 

Temperature in reactor R-4, °С 497 

 
Calculations results are presented in Fig. 1-3. 
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Fig. 1. Summary n-heptane and n-octane content influence on aromatics concentration in the catalysate and the catlysate research octane 
number (RON) 

Increase in summary n-heptane and n-octane content in the feed due to gasoline fraction from hydrodewaxing 
addition provides conversion of these components to toluene and xylene, which leads to rise in aromatics 
concentrations in the catalytic reforming product (catalysate) and the catalysate RON growths. As it can be seen in 
Fig. 1 aromatics concentration goes up by 1.97 % wt. from 54.19 to 56.16 % wt. The catalysate RON increases by 
0.7 points from 91.4 to 92.1 points. 
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Fig. 2. Iso-paraffins content in the feed influence on aromatic content in the catalysate and the catalysate RON 

The increase in i-paraffins in the reforming feed leads to rise in aromatic content in catalysate by 3.6 % from 53.2 
to 56.8 % wt. The catalysate RON goes up by 0.9 points from 91.1 to 92.0 points (Fig. 2). 
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Fig. 3. Naphthenes content in the feed influence on aromatics concentration in catalysate and catalysate RON 

One of the catalytic reforming desired reactions is naphthenes dehydrogenation with aromatics formation. 
Consequently, the feed which contains a significant amount of naphthenes is more preferable for refining in the 
catalytic reforming process in order to receive gasoline. So, if naphthenes content in stable gasoline from 
hydrodewaxing goes up by 0.13 % wt, the aromatics content in the catalysate rises by 1.73 % wt., catalysate RON 
increases by 0.7 points from 91.2 to 91.9 points (Fig. 3). 

 
3. Technological scheme of stable gasoline from hydrodewaxing unit supply to the reforming unit 

 
Taking into account gasoline fraction from hydrodewaxing addition, the catalytic reforming feed composition 

influence research has showed that stable gasoline composition changing has a significant positive effect on 
catalytic reforming indicators, namely isomerization degree, aromatics and isomers content, and catalysate RON 
increase. Hence, stable gasoline from hydrodewaxing unit involving into the catalytic reforming feed flow is 
reasonable and necessary from the point of plant resource efficiency increase due to raw materials amount 
enlargement. 

Thus, the gasoline fraction from hydrodewaxing unit supply to reforming unit has been organized on a petroleum 
refining factory (Fig. 4). 
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Fig. 4. Catalytic reforming process implementation for gasoline fraction from hydrodewaxing refining: K-2 – hydrogenate stabilization 
column; E-3 – air condenser; E-4 – water condenser; E-2 – reflux accumulator; P-1,2 – feed pumps; P-5 – reflux pump; R-236, 237 – feed 

reservoirs 

However, it should be taken into account that stable gasoline composition depends on feed composition and 
technological regime realized at the hydrodewaxing unit. That is why hydrodewaxing process mathematical model 
application is needed for investigating feed composition and technological parameters influence on the yield and 
products composition. The further work is devoted to this purpose. 

 
4. Conclusions 

 
The present research has showed that stable gasoline from hydrodewaxing unit involving into catalytic reforming 

feed flow is reasonable and necessary in the context of industrial unit resource efficiency increase by means of the 
feed amount enlargement and gasoline fraction from hydrodewaxing unit quality improvement. Thereby, due to high 
iso-paraffins and naphthenes content in stable gasoline from hydroisomerization, aromatics concentration in 
catalysate, isomerization degree, and catalysate RON increase. 
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