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1. Introduction:  

As the demand for electric power is increasing as well as the issues related to 

climate change, there's a need to develop new sustainable environmentally friendly 

energy systems. Research activities are currently underway worldwide to develop 

Generation IV nuclear reactor concepts with the objective of improving thermal effi-

ciency and increasing economic competitiveness of (NPPs) compared to modern 

thermal power plants. There is a great interest in many countries in the research and 

development (R&D) and conceptual design of SCWRs (one of the six reactor tech-

nologies selected for research and development under the Generation IV program). 

The supercritical water cooled reactor (SCWR) uses supercritical water as 

the working fluid. SCWRs resemble light water reactors (LWRs) but operate above 

the thermodynamic critical point of water (374C, 22.1MPa), with a direct once-

through cycle like a supercritical boiler. This helps improve the thermal efficien-

cies (i.e., about 45% vs. about 33% efficiency for current LWRs) and a simplified re-

actor system (i.e., the need for a pressurizer, steam generators, steam separators, and 

dryers is eliminated), and is hence expected to help improve its economic competi-

tiveness as the main mission of the SCWR is generation of low-cost electricity. [1][2] 

2.Supercritical operation and general considerations: 

The feedwater is pressurized to a pressure beyond its critical pressure. The 

change in the thermo-physical properties of water at critical and supercritical pres-

sures is dramatic, but continuous (As shown in Fig-2). [3] . Such heating can be made 

to be closer to the heat source temperature than a subcritical cycle with the same 

steam temperature that shows an abrupt change in temperature within the two phase 

https://en.wikipedia.org/wiki/Working_fluid
https://en.wikipedia.org/wiki/Light_water_reactors
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region, so the cycle receives more of its heat at higher temperatures than a subcritical 

cycle with the same turbine inlet steam temperature resulting in decreasing the exter-

nal irreversibilities of the cycle. A disadvantage of the supercritical-pressure cycle, 

however is that expansion from point 1 to the condenser pressure would result in very 

wet vapor in the latter stages of the turbine which decreases the turbine efficiency 

,hence, supercritical pressure cycles invariably use reheat and often double reheat 

with separators. 

• At supercritical pressures, there's no liquid-vapor phase transition (Boiling), 

so the coolant remains single-phase throughout the system, therefore, there's no such 

a thing as Critical Heat Flux or burn out, only in a certain range of operation a Dete-

riorated Heat Transfer may occur. (Pioro and Duffy 2003). 

• Working near the pseudo critical point allows working with higher rates of 

enthalpy content which results in significant decrease in the mass flow rate of the 

coolant and thus a reduction in the size of the system and the reactor coolant pumping 

power. 

•The large temperature difference inside the core leads to a significant density 

decrease and poor moderation in the upper part of the core, this can be eliminated by 

the use of water rods in which the cold coolant flows down or a solid moderator (as 

shown in Fig-3) [4]. 

•Conventional fuels like UO2 are not suitable for supercritical operation, due to 

the decrease in their thermal conductivity at high temperatures, which leads to a rise 

in their centerline temperature above the industry accepted limit affecting the fuel in-

tegrity (1850ºC). 

•The SCWR structural and cladding systems are challenging aspects, as water 

properties change rapidly around the pseudo-critical point and the effects on materials 

are less known. However, recent studies showed that Zirconium-based alloys, com-

mon in water-cooled reactors, may not be a viable as zirconium would corrode rapid-

ly at very high temperatures, and hence the enrichment of the fuel will have to be 

higher to compensate for the neutron absorption by the cladding, which can't be made 

from the zirconium customary in LWRs. Stainless steel or nickel alloys may be used.  

  
Fig.2.Variation in selected thermo- physical properties of water  

 near the Pseudo-critical point. 

https://en.wikipedia.org/wiki/Uranium_enrichment
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Fig.3. Typical reference core design with water rods  

 

3.Typical supercritical water reactor design: Different design concepts are 

under study but they are divided into two main groups: 

 Pressure Tube system (Derived by the CANDU experience) 

 Pressure Vessel system (Derived by LWRs experience) 

A typical design of a PV-SCWR (is shown in Fig-12) is a direct cycle, thermal 

neutrons, ordinary water cooled and moderated with an operating pressure of 25MPa 

and inlet/outlet coolant temperature of 280/500 C, low enriched fuel with a thermal 

efficiency of about 45%.[4] 

A typical SCWR design parameters are contained in Table4.1  

  
 Fig.12. Pressure Vessel SCWR schematic (Courtesy of USDOE) 
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Table4.1 Typical SCWR Design Parameters 

 

Summary:  

•Using NPPs with supercritical water reactors can lead to considerable eco-

nomic advantages such as: 

-Increase in the efficiency up to 44 -45%, 

-Decrease in the metal intensity of equipment and reduction of construction 

and assembling  

•We still need to develop suitable materials for structures and cladding that can 

withstand high pressures and temperatures in a severe aggressive medium like super-

critical water along with heat transfer correlations at supercritical flow conditions. 
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