АРКТИКА И ЕЕ ОСВОЕНИЕ

и материалов), столовую, в дополнение не надо забывать о системах вентиляции и кондиционирования воздуха. На любой военной базе очень большой расход электроэнергии идет на освещение, так как ночью весь периметр базы должен освещаться и должны работать прожекторы. Все электроснабжение планируется получать от следующих энергообъектов [2]: автоматизированной дизельной электростанции; центральных распределительных трансформаторных подстанций модульного типа; дизель генераторных установок; воздушных линии электроснабжения.

Литература

- 1. Отчет о научно-исследовательской работе по теме «Разработка подпрограммы государственной программы Российской федерации "Экономическое и социальное развитие Арктической зоны Российской Федерации на 2011—2020 годы" в Республике Caxa (Якутия)» // http://www.sakha.gov.ru/en/ node/65700
- 2. Пилясов А. Н. Контуры стратегии развития Арктической зоны России // Арктика: экология и экономика. -2011. № 1. С. 38-47.

ЭНЕРГОВООРУЖЕННОСТЬ ЛЕДОКОЛОВ СЕВЕРНОГО МОРСКОГО ПУТИ Т. С. Шарыгина, Н. В. Толкачев, Н.М. Космынина

Научный руководитель доцент Н.М. Космынина

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

В настоящее время Россия является единственной страной в мире, которая эксплуатирует суда атомного гражданского флота.

Открытие огромных залежей минералов в арктических районах привело к возникновению сложной задачи: создание в Артике надежной транспортной системы. Транспортная система Арктики включает в себя: Северный морской путь, корабли речного и морского флота, авиацию, автомобильный, трубопроводный, железнодорожный и транспорт, береговую инфраструктуру.

Северный морской путь — это основная российская морская коммуникация в Арктике: вдоль северных берегов России по морям Северного Ледовитого океана; через устья судоходных сибирских рек; дальневосточные, европейские порты.

Работа морского транспорта выявила необходимость внесения более мощных ледоколов в ледокольный флот, так как без них дальнее расширение сроков арктической навигации невозможно.

В настоящее время в ледоколах применяется, в основном, два типа судовых энергоустановок: дизель-электрические; атомные турбо-электрические [2].

Дизель-электрические установки повышают маневренность судну, а так же дают возможность изменения мощности. С помощью силовой установки судно повышает свою автономность. В условия Арктики дозаправка судна является невозможной. Следует отметить, что паровые машины с непосредственной передачей первых ледоколов позволяли ледоколам пройти весь Северно - Морской путь без дозаправки.

50-е годы XX века являются началом активного освоения ресурсов Сибири, при этом возникла необходимость навигация по Северному морскому пути в течение всего года. И здесь явное преимущество показали атомные ледоколы. Имея большую мощность энергоустановки, атомоход может работать в течение

СЕКЦИЯ 6. СЕВЕРНЫЙ МОРСКОЙ ПУТЬ В АРКТИКЕ И ЕГО ПЕРСПЕКТИВЫ. СОВРЕМЕННОЕ ЭНЕРГООБЕСПЕЧЕНИЕ В ЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ АРКТИКИ

нескольких лет без дозаправки. Помимо этого, запасы ядерного топлива занимают на судне мало места. Следовательно, возможно увеличение полезной нагрузки, и продление времени отсутствия в портах [1]. Кроме того, применение ядерных энергетических установок позволило ограничить осадку ледоколов, и использовать их высокую пропульсивную мощность [1].

Впервые атомная энергетическая установка «Ленин» был принята в эксплуатацию в 1959 году. Ледокол с такой установкой вышел на Северный морской путь в 1960 году.

Ледоколы можно условно поделить по мощности судовой энергетической установки:

- мощные ледоколы (линейные ледоколы-лидеры в замерзающих неарктических и в арктических морях; мощность двигателей более 25000 л.с.);
- \bullet средние ледоколы (линейные ледоколы при проводке судов; мощность двигателей 12000-25000 л.с.);
- малые ледоколы (вспомогательные ледоколы; мощность двигателей 6000-12000 л.с.).

В таблице 1 приведены данные атомных ледоколов российских и зарубежных производителей [2].

Таблица 1 Основные технические характеристики атомных ледоколов

Название	Год	Страна постройки	Водоизмещен	Мощность на
ледокола	постройки		ие, т	валах, кВт
"Россия"	1985	CCCP	23625	52800
"Советский	1989	CCCP	23460	52800
союз"				
"Ямал"	1992	CCCP	23460	52800
"50 лет	2007	СССР, Россия	211	36000
Победы"				
"Таймыч"	1989	Финляндия, СССР	21100	36000
"Вайгач"	1990	Финляндия	21100	36000

В настоящее время Россия имеет 20 дизельных ледоколов и 6 атомных ледоколов. У нашей страны больше возможностей пользоваться богатствами Арктики, так как атомный ледокольный флот еще не используется другими государствами. Например, Дания имеет 4 ледокола, Норвегия – 1, США – 3, Канада – 2 тяжелых ледокола и больше десяти малых ледоколов. Между тем, анализируя современные исследования в данной области, специалисты утверждают, что к 2030 году потребуется до 200 проводок ледоколов в год. При этом ледоколы будут загружены не более, чем на 70%. Также, обеспечить обслуживание портов и работу маршрута круглый год смогут 5-6 атомных ледоколов мощностью 60-110 МВт, 6-8 неатомных ледоколов по 25-30 МВт и 8-10 неатомных ледоколов по 16-18 МВт [3].

Серьезная проблема атомных ледоколов: воздействие ионизирующего излучения на окружающую среду и членов экипажа. Это потребовало особой конструкции ледоколов и разработки специальных мер защиты от радиации. Ядерные реакторы расположены в средней части ледокольного судна. От внешнего мира реакторный отсек отгорожен герметичной бетонной капсулой метровой толщины. Сверху реактор накрыт многотонным стальным люком. Предусмотрены три уровня защиты: жаропрочные топливные таблетки, герметичные циркониевые

АРКТИКА И ЕЕ ОСВОЕНИЕ

оболочки топливных элементов, конструкция реактора [3]. За время эксплуатации всех ледоколов России не было ни одного аварийного случая с атомными энергетическими установками. Они показали себя надежными и безопасными.

Литература

- 1. Котляр П.В. Плавучие мини-АЭС [Электронный ресурс] печ.изд. ЗАО "Газета.РУ" 2012. URL: http://www.bio.spbu.ru/science/scienceinfo /el_resourse. phphttp://www.proatom.ru/modules.php?file=article&name=News&sid=3696
- 2. Российская и мировая атомная энергетика: учебное пособие для студентов вузов / В. М. Кузнецов, Х. Д. Чеченов; Российская академия наук (РАН), Институт истории естествознания и техники им. С. И. Вавилова (ИИЕТ); Гидропресс. Москва: Изд-во Московского гуманитарного ун-та, 2008. 764 с.
- 3. Становление атомного комплекса Российской Федерации (историко-технический анализ конструкционных, технологических и материаловедческих решений) / В. М. Кузнецов; Институт истории естествознания и техники им. С. С. Вавилова РАН. Москва: Изд-во МНЭПУ, 2006. 340 с.

КОМПЛЕКС ТЕХНИЧЕСКИХ СРЕДСТВ СИСТЕМЫ УПРАВЛЕНИЯ ИНТЕЛЛЕКТУАЛЬНЫМ МЕСТОРОЖДЕНИЕМ

Д.С. Щеголихин, М.Н. Морозов

Научный руководитель ассистент М.Н. Морозов

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

По мнению экспертов, к 2020 г. при благоприятных экономических условиях извлекаемые запасы в России при внедрении новейших технологий могут быть увеличены до 4 миллиардов тонн при годовой дополнительной добыче в 40-60 миллионов тонн. Новые технологии позволят России дополнительно получать 28-30 миллиардов долларов в год. К сожалению, в России процессы внедрения таких технологий идут медленно, в то время, как в США используя новейшие разработки ежегодно дополнительно получают более 30 миллиардов долларов.

Интеллектуальное нефтегазовое месторождение — система автоматического (автоматизированного) управления операциями по добыче нефти и газа, предусматривающая непрерывную в реальном масштабе времени оптимизацию интегральной модели месторождения и модели управления добычей, гарантирующей оптимальное управление на всех уровнях при контроле целей предприятия.

Основными условиями существования интеллектуального месторождения является: формализованность информационной модели месторождения, наличие аппарата управления, точные интерфейсы обратной связи, интерфейсы для оптимизации процессов, моделей и критериев.

В рамках концепции «интеллектуальное месторождение» можно получить информационные технологии, которые позволяют:

1) Оптимизировать производительность оборудования и продуктивность скважин за счет анализа данных телеметрии, замеров давлений и дебитов на «спутниках», акустического шума, температур, данных типовых и специальных гидродинамических и геофизических исследований, актов испытаний, результатов освоения скважин после ремонтов, данных о проведенных и проводимых геолого-