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The Eisenhart lift provides an elegant geometric description of a dynamical system of second order 
in terms of null geodesics of the Brinkmann-type metric. In this work, we attempt to generalize the 
Eisenhart method so as to encompass higher derivative models. The analysis relies upon Ostrogradsky’s 
Hamiltonian. A consistent geometric description seems feasible only for a particular class of potentials. 
The scheme is exemplified by the Pais–Uhlenbeck oscillator.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In classical mechanics several methods are known which pro-
vide a consistent geometric description of a second order dynam-
ical system. In general, the idea is to represent the equations of 
motion as geodesic equations in an appropriately chosen curved 
spacetime or to embed them into geodesics of a larger system in 
such a way that the dynamics of the extra degrees of freedom 
is fixed provided the evolution of the original model is known. 
The Jacobi approach (see, e.g., [1]) and the Eisenhart lift [2]1 seem 
to be the most popular methods of that kind. Given a dynami-
cal system with n degrees of freedom, the former operates with a 
Riemannian metric on an n-dimensional manifold, while the latter 
yields a Brinkmann-type metric [4] of Lorentzian signature in an 
(n + 2)-dimensional spacetime which is of interest in the general 
relativistic context.

In addition to the aesthetic appeal of the geometrization of dy-
namics, the Eisenhart lift provides an efficient means of studying 
hidden symmetries of spacetime. In general, such symmetries are 
associated with Killing tensors. In a series of recent works [5–10]
various Lorentzian spacetimes admitting irreducible Killing tensors 
of rank greater than two have been constructed by applying the 
Eisenhart lift to specific integrable models. In [11,12] Ricci-flat 
spacetimes of the ultrahyperbolic signature which support higher 
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1 As originally formulated in [2], the Eisenhart lift had not received much at-
tention by physicists and had soon fallen into oblivion. The framework has been 
rediscovered in [3] in studying the geometry behind the Bargmann central exten-
sion of the Galilei group which paved the way for numerous physical applications.
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rank Killing tensors or possess maximally superintegrable geodesic 
flows have been built along similar lines. Hidden symmetries of 
the Eisenhart lift metrics and the Dirac equation with flux have 
been studied in [13]. Geometric uplifts of time-dependent systems 
were recently explored in [14].

To the best of our knowledge, geometrizations of higher deriva-
tive systems of classical mechanics have not yet been studied in 
any detail. Although higher derivative theories generically show 
up instability in classical dynamics and bring about violation of 
unitarity and/or trouble with ghosts in quantum theory, some of 
them, e.g. the Pais–Uhlenbeck oscillator [15], are physically consis-
tent and do deserve a geometric formulation. The goal of this work 
is to construct the Eisenhart lift for a particular class of higher 
derivative models.

The paper is organized as follows. In Sect. 2 the original Eisen-
hart approach is reviewed with an emphasis on its Hamiltonian 
version. In Sect. 3 we analyze Ostrogradsky’s Hamiltonian for the 
simplest class of dynamical system of order 2n, where n is a natu-
ral number. It is demonstrated that, in view of the terms linear in 
momenta which are present in the Hamiltonian, the conventional 
Eisenhart procedure fails as it yields a degenerate metric. An alter-
native method, which operates with a larger set of extra degrees 
of freedom, is proposed and shown to yield a consistent geometric 
description for a particular class of potentials which are the sum of 
homogeneous functions with arbitrary coefficients (coupling con-
stants). Geometric properties of such metric are discussed in detail. 
The procedure is illustrated by the examples of the fourth order 
Pais–Uhlenbeck oscillator and its nonlinear generalization in [16]. 
In Sect. 4 an alternative possibility is considered which relies upon 
a simple canonical transformation applied to Ostrogradsky’s Hamil-
tonian. It makes the conventional Eisenhart lift feasible, provided 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the potential depends on the variable and its derivatives of even 
order only. The Pais–Uhlenbeck oscillator exemplifies the scheme. 
Sect. 5 contains the discussion and outlook.

2. Eisenhart lift for second order systems

The Eisenhart lift [2] provides a geometric description of a dy-
namical system with n degrees of freedom x1, . . . , xn in terms of 
null geodesics associated with the Brinkmann-type metric2 formu-
lated in (n + 2)-dimensional spacetime of Lorentzian signature

dτ 2 = g AB(z)dzAdzB = −2U (x)dt2 + 2dtds +
n∑

i=1

(dxi)
2, (1)

where zA = (t, s, x1, . . . , xn) and U (x) is the potential which gov-
erns the dynamics of the original second order mechanics.3 Rewrit-
ing the null geodesic equations in components

d2xi

dt2
+ ∂i U (x) = 0,

1

2

n∑
i=1

(
dxi

dt

)2

+ U (x) = −c2,

dt

dτ
= c1,

ds

dt
− 2U (x) = c2, (2)

where c1 and c2 are constants of integration, one concludes that 
t is affinely related to τ , while s decouples from the rest and its 
dynamics is unambiguously fixed provided the evolution of xi is 
known. The original second order system is thus recovered by im-
plementing the null reduction along s [2]. A remarkable feature of 
the Eisenhart metric is that it admits the null and covariantly con-
stant Killing vector field ξ = ∂

∂s which means that it belongs to the 
class of Kundt spacetimes.

An alternative possibility to construct the Eisenhart metric (1)
is to start with the Hamiltonian corresponding to the original dy-
namical system

H = 1

2

n∑
i=1

pi pi + U (x), (3)

where (xi, pi) with i = 1, . . . , n form the canonical pairs, intro-
duce two extra canonical pairs (t, p(t)), (s, p(s)) and promote (3) to 
the specific function quadratic in momenta in the extended phase 
space [5]

H̃ = 1

2

n∑
i=1

pi pi + U (x)p(s) p(s) + p(s) p(t). (4)

Note that for mechanics interacting with external vector field po-
tential terms linear in momenta are present in the original Hamil-
tonian. When constructing the extension, they should be multi-
plied by p(s) [5]. It is easy to verify that the equations of motion 
following from (4) imply that p(t) and p(s) are constants of the 
motion while t is affinely related to the evolution parameter τ : 
dt
dτ = p(s) . Assuming p(s) �= 0 and switching from τ to t in the re-
maining equations, one gets

d2xi

dt2
+ ∂i U (x) = 0,

ds

dt
− 2U (x) = p(t)

p(s)
, (5)

which reproduces the dynamical content of (2). Introducing the 
notation

2 For applications of the Brinkmann metric in other physical contexts see [3,
17–20].

3 For simplicity, we ignore possible interaction with external vector field potential 
Ai(x) which would add the extra term 2Ai(x)dtdxi to the metric [4].
H̃ = 1

2
g AB(z)P A P B , (6)

where P A = (p(t), p(s), pi), and considering H̃ as the geodesic 
Hamiltonian, one arrives at the Eisenhart metric (1). In this frame-
work, the condition that the geodesic is null is usually interpreted 
as the fact that the time translation generator ∂t in the spacetime 
is linked to the Hamiltonian governing the dynamics of the origi-
nal system (3).

3. Eisenhart lift for higher derivative models via Ostrogradsky’s 
Hamiltonian

Consider a particular class of dynamical systems of order 2n
for which the highest derivative is separated from the rest in the 
Lagrangian

L = 1

2
x(n)x(n) − U

(
x, ẋ, . . . , x(n−1)

)
, (7)

where ẋ = d
dt x(t), x(k) = dk

dtk x(t) and t is the evolution parameter. 
The corresponding equation of motion reads

x(2n) +
n−1∑
k=0

(−1)k+n+1 dk

dtk

(
∂

∂x(k)
U

(
x, ẋ, . . . , x(n−1)

))
= 0. (8)

In the next section we shall consider a more general Lagrangian 
involving also the linear contribution −x(n)V

(
x, ẋ, . . . , x(n−1)

)
.

As was mentioned in the preceding section, a conventional 
means of constructing the Eisenhart metric associated with a sec-
ond order dynamical system is to extend its phase space by the 
extra canonical pairs (t, p(t)), (s, p(s)) and promote the Hamilto-
nian to a specific function quadratic in momenta which determines 
the inverse Eisenhart metric.

The standard Hamiltonian formulation for the higher derivative 
system (7) is built with the use of Ostrogradsky’s method

H = 1

2
p2

n +
n−1∑
α=1

pαxα+1 + U (x1, . . . , xn), (9)

where the variables (xn, pn) and (xα, pα) with α = 1, . . . , n − 1
form the canonical pairs and x1 is identified with the original dy-
namical variable x in (8). In particular, the equations of motion 
following from (9) include the chain of relations

ẋα = xα+1. (10)

As far as a putative geometric formulation of the Hamiltonian sys-
tem (9) is concerned, the first order relations (10) reveal a subtlety. 
Because geodesic equations are of the second order, (10) should 
arise as first integrals. However, a generic first integral involves a 
constant of integration. It is thus likely that within the Eisenhart-
like approach to the geometrization of higher derivative systems 
Eq. (10) should be modified so as to include arbitrary constants. 
The resulting geometric formulation will encompass a larger class 
of models only a particular member of which will reproduce the 
dynamical system (9). Below we discuss a variant of the Eisenhart 
lift for which (10) is promoted to the first integrals of the form

ẋα

xα+1
= Cα, (11)

where Cα are arbitrary constants. For the extended dynamical sys-
tem these are interpreted as coupling constants.

An attempt to construct the conventional Eisenhart metric as-
sociated with the Hamiltonian (9) reveals a problem. The metric 
turns out to be degenerate. In order to circumvent the difficulty, 
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let us extend Ostrogradsky’s phase space by a set of extra vari-
ables (t, p(t)), (sα, p(s)

α ) with α = 1, . . . , n − 1 and introduce the 
Hamiltonian which governs the dynamics in the extended phase 
space

H̃ = 1

2
p2

n +
n−1∑
α=1

p(s)
α pαxα+1 + U (x1, . . . , xn)

n−1∑
α=1

p(s)
α p(s)

α + 1

2
p(t) p(t).

(12)

As follows from (12), p(t) and p(s)
α are constants of the motion 

while the evolution of sα is fixed provided the general solution to 
the equations of motion for the original phase space variables is 
known. The dynamics of the sector (xn, pn), (xα, pα) is thus split 
from the evolution of the extra variables (t, p(t)), (sα, p(s)

α ) which 
is one of the key features of the Eisenhart lift.

The Eisenhart-like metric associated with the Hamiltonian (12)
reads

dτ 2 = g AB(z)dzAdzB

= dt2 + dx2
n + 2

n−1∑
α=1

dxαdsα
xα+1

− 2U (x1, . . . , xn)

n−1∑
α=1

dx2
α

x2
α+1

,

(13)

where zA = (t, sα, xα, xn), α = 1, . . . , n −1, A = 1, . . . , 2n. Introduc-
ing the geodesic Lagrangian L = 1

2 g AB(z)żA żB , where żA = dzA

dτ and 
τ is the proper time, and adopting the notation

πα = 1

xα+1

(
ṡα − 2U

ẋα

xα+1

)
, (14)

one obtains the geodesic equations

ẗ = 0,

(
ẋα

xα+1

)·
= 0, (15)

ẍn + πn−1
ẋn−1

xn
+ ∂nU

n−1∑
β=1

(
ẋβ

xβ+1

)2

= 0,

π̇α + πα−1
ẋα−1

xα
+ ∂αU

n−1∑
β=1

(
ẋβ

xβ+1

)2

= 0,

where it is assumed that x0 = π0 = 0 and ∂αU = ∂U
∂xα

, ∂nU = ∂U
∂xn

.
The first line in Eq. (15) implies that t is affinely related to the 

proper time τ while ẋα
xα+1

are constants of the motion

ẋα

xα+1
= Cα. (16)

These relations generalize (10). In what follows we consider all Cα

to be nonzero and abbreviate

� =
n−1∑
β=1

C2
β . (17)

For α = 2, . . . , n − 1 the third line in (15) yields the recurrence re-
lation which links πα−1 to π̇α and ∂αU , while the second line of 
(15) fixes πn−1 in terms of ẍn and ∂nU . Given the definition of πα

in (14), one concludes that all together these equations provide a 
set of the first order differential equations which unambiguously 
fix sα , provided the dynamics of xα and xn is known. The remain-
ing equation π̇1 + ∂1U� = 0 yields
x(2n) + [(C1 . . . Cn−1)
2�]

×
n−1∑
k=0

(−1)k+n+1 dk

dτ k

(
∂

∂x(k)
U

(
x,

ẋ

C1
, . . . ,

x(n−1)

C1 . . . Cn−1

))
= 0,

(18)

where we denoted x1 = x. Comparing Eqs. (18) and (8), one con-
cludes that the geodesics of the Eisenhart-like metric (13) describe 
an (n − 1)-parametric deformation of the original dynamical sys-
tem (8), Cα being the deformation parameters. Note that for sys-
tems of the fourth order all factors including C1 can be removed 
by redefining the proper time C1τ → τ̃ such that (18) reduces 
exactly to (8), while for generic potentials such rescaling gives 
U

(
x, ẋ, C1

C2
ẍ, . . . ,

[
C1
C2

. . . C1
Cn−1

]
x(n−1)

)
.

If the factors (C1 . . . Cn−1)
2� and 1

C1
, . . . , 1

C1...Cn−1
in (18) can 

be removed by redefining coupling constants entering the original 
potential, the deformation is fictitious and the metric (13) provides 
a valid geometric description of (8). In particular, this occurs for 
potentials of the form

U (x1, x2, . . . , xn) =
N∑

i=1

gi W i(x1, x2, . . . , xn), (19)

where W i(x1, x2, . . . , xn) are homogeneous functions of the argu-
ments x3, . . . , xn of possibly different degrees ki

W i(x1, x2, λx3, . . . , λxn) = λki W i(x1, x2, x3, . . . , xn) (20)

and gi are coupling constants.
As an example, let us consider the fourth order Pais–Uhlenbeck 

oscillator which is described by the Lagrangian

L = 1

2
ẍ2 − 1

2
(ω2

1 + ω2
2)ẋ2 + 1

2
ω2

1ω
2
2x2, (21)

where ω1 and ω2 are two distinct frequencies of oscillation, and 
the equation of motion(

d2

dt2
+ ω2

1

)(
d2

dt2
+ ω2

2

)
x = 0. (22)

In this case the metric (13) takes the form

dτ 2 = dt2 + dx2
2 + 2

x2
dx1ds1 −

(
ω2

1 + ω2
2 − ω2

1ω
2
2

(
x1

x2

)2
)

dx2
1,

(23)

while the geodesic equations include

x(4)
1 + C2

1(ω2
1 + ω2

2)ẍ1 + C4
1ω

2
1ω

2
2x1 = 0, (24)

where ẋ1 = dx1
dτ and τ is the proper time. Redefining the evolu-

tion parameter C1τ → τ̃ one reproduces (22). Alternatively one 
can rescale the frequencies C1ω1,2 → ω̃1,2.

One more example is given by a nonlinear system introduced 
by Smilga in studying the stability of higher derivative mechanics 
[16]

L = 1

2

(
ẍ + ω2x

)2 − α

4
x4 − β

2
x2 ẋ2, (25)

where ω, α and β are arbitrary constants. Its geometrization is 
given by (13) which involves

U (x1, x2) = −ω4

x2
1 + ω2x2

2 + α
x4

1 + β
x2

1x2
2. (26)
2 4 2
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Geometric description of higher derivative systems reveals 
properties which are strikingly different from those characteriz-
ing second order models. The metric (13) is of the ultrahyperbolic 
signature.4 The null Killing vector fields ξ (α) = ∂

∂sα
fail to be co-

variantly constant. The spacetime has curvature singularities along 
the hyperplanes xα = 0 with α = 2, . . . , n. Irrespective of the ex-
plicit form of the potential U (x1, . . . , xn), (13) does not solve the 
vacuum Einstein equations. This is to be contrasted with (1) which 
is Ricci-flat provided the potential is a harmonic function [17], 
while for spacetimes of the ultrahyperbolic signature the potential 
should be an additive function [11]. In view of the ultrahyperbolic 
signature, it proves problematic to unambiguously link the Hamil-
tonian of the original mechanics to the time translation generator 
in spacetime. Thus, the specification to null geodesics convention-
ally adopted for second order systems seems to be superfluous.

4. Canonical transformation of Ostrogradsky’s Hamiltonian and 
Eisenhart lift

As was mentioned in the preceding section, a naive treat-
ment of Ostrogradsky’s Hamiltonian within the Eisenhart frame-
work yields a degenerate metric. The problem is rooted in terms 
linear in momenta which are present in the Hamiltonian. As is 
well known, higher derivative dynamics may admit more than 
one Hamiltonian description (see, e.g., Refs. [21,22] and refer-
ences therein). In this section we consider an alternative possibility 
which consists in applying the simple canonical transformation

x2k → p2k, p2k → −x2k, (27)

with k = 1, . . . , [ n
2 ], which removes the unwanted linear terms en-

tering the kinetic part provided the original potential depends on 
x and its derivatives of even order only. The transformed system 
turns out to be the conventional mechanics in pseudo-Euclidean 
space to which the original Eisenhart lift can be straightforwardly 
applied. For what follows it proves convenient to treat the cases 
of even and odd values of n separately and consider a more gen-
eral Lagrangian which also involves the contribution linear in the 
highest derivative

L = 1

2
x(n)x(n) − x(n)V

(
x, ẍ, x(4), . . . , εx(n−1)

)
− U

(
x, ẍ, x(4), . . . , εx(n−1)

)
, (28)

where ε = 1 for even (n − 1) and ε = 0 for odd (n − 1).
For n = 2m the equation of motion reads

x(4m) − d2m V

dt2m
−

m−1∑
k=0

d2k

dt2k

(
x(2m) ∂V

∂x(2k)
+ ∂U

∂x(2k)

)
= 0. (29)

Constructing Ostrogradsky’s Hamiltonian and implementing the 
canonical transformation (27), one gets

H ′ =
m∑

k=1

p2k−1 p2k + W (x),

W (x) = 1

2
(V − x2m)2 + U −

m−1∑
k=1

x2kx2k+1, (30)

where U = U (x1, x3, . . . , x2m−1) and V = V (x1, x3, . . . , x2m−1). It is 
straightforward to verify that the canonical equations of motion re-
sulting from (30) do reproduce (29). Because (30) is formulated as 

4 For n = 2 the signature is Lorentzian. Yet, the spacetime is parametrized by 
three temporal and one spatial coordinates.
the conventional mechanics in pseudo-Euclidean space, the stan-
dard Eisenhart extension is feasible

H̃ =
m∑

k=1

p2k−1 p2k + W (x)p(s) p(s) + p(s)p(t), (31)

which yields the metric

dτ 2 = −W (x)dt2 + dtds +
m∑

k=1

dx2k−1dx2k, (32)

where W (x) is given in (30). The geodesic equations associated 
with (32) do reproduce (29), while the evolution of s is fixed pro-
vided the general solution of (29) is known. For earlier application 
of the Eisenhart lift to mechanics in pseudo-Euclidean space see 
[11,12].

Turning to the odd values of n = 2m + 1, the condition that the 
function x(n)V + U depends on x and its derivatives of even order 
only implies

V = 0, U = U
(

x, ẍ, .., x(2m)
)

, (33)

while the equation of motion reads

x(4m+2) +
m∑

k=0

d2k

dt2k

∂U

∂x(2k)
= 0. (34)

After performing the canonical transformation (27), Ostrogradsky’s 
Hamiltonian associated with Eq. (34) takes the form5

H ′ = 1

2
p2

2m+1 +
m∑

k=1

p2k−1 p2k + W (x),

W (x) = U (x1, x3, .., x2m+1) −
m∑

k=1

x2kx2k+1, (35)

which gives rise to the extended Hamiltonian and the Eisenhart 
metric

H̃ = 1

2
p2

2m+1 +
m∑

k=1

p2k−1 p2k + W (x)p(s) p(s) + p(s) p(t),

dτ 2 = −W (x)dt2 + dsdt +
m∑

k=1

dx2k−1dx2k + 1

2
dx2

2m+1. (36)

As far as applications are concerned, the method above fits per-
fectly to geometrize the celebrated Pais–Uhlenbeck oscillator [15]
which is characterized by the potentials6

V = −1

2

2m−1∑
k=m

σ n
k x(2k−2m), U = −1

2
x

m−1∑
k=0

σ n
k x(2k),

σ n
k =

n∑
i1<i2<..<in−k

ω2
i1

. . .ω2
in−k

, (37)

for even n = 2m or

U = 1

2
x(2m)

m∑
k=0

σ n
m+kx(2k) + 1

2
x

m−1∑
k=0

σ n
k x(2k) (38)

for odd n = 2m + 1.

5 The Hamiltonians (30) and (35) can be also derived from the Lagrangian (28)
by the method in [21].

6 We use the notation in [23].
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Like in the preceding section, the Eisenhart metrics constructed 
above are of the ultrahyperbolic signature. This is because Eqs. (30)
and (35) appeal to mechanics in pseudo-Euclidean space. Worth 
mentioning also is that, within the alternative Hamiltonian for-
mulation adopted in this section, the analogues of the first order 
relations (10) read

d2x2k−1

dt2
− x2k+1 = 0. (39)

Being the second order equations, these fit perfectly to be embed-
ded into the geodesic equations associated with the conventional 
Eisenhart metric.

5. Conclusion

To summarize, in this work a possibility to generalize the Eisen-
hart lift so as to encompass higher derivative systems was exam-
ined. The analysis relied upon a proper extension of Ostrograd-
sky’s Hamiltonian formulation. A consistent geometric description 
proved feasible only for a particular class of potentials. It includes 
potentials which are the sum of homogeneous functions with ar-
bitrary coefficients (coupling constants) or depend on the variable 
and its derivatives of even order only. The consideration was ex-
emplified by the Pais–Uhlenbeck oscillator.

A number of interesting issues deserve a further consideration. 
The metrics constructed in this work are of the ultrahyperbolic sig-
nature. Although this seems to be an indispensable feature, it is 
interesting to understand whether Lorentzian spacetimes may be 
associated with higher derivative systems by developing alternative 
approaches. An important issue is to study how global symme-
tries of the original higher derivative mechanics are transmitted 
into those of the Eisenhart metric. As was mentioned in Sect. 3, 
a straightforward attempt to construct the Eisenhart metric as-
sociated with the conventional Ostrogradsky’ Hamiltonian yields 
a degenerate metric tensor. It would be interesting to investigate 
whether an analogue of the Newton–Cartan geometry, which oper-
ates with a divergent metric, can be developed in this case. A con-
sistent geometrization of generic unconstrained potentials remains 
a challenge.
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