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We construct the Hamiltonians and symmetry generators of Calogero-oscillator and Calogero-Coulomb
models on the N-dimensional sphere within the matrix-model reduction approach. Our method also
produces the integrable Calogero-Coulomb-Stark model on the sphere and proves the integrability of the
spin extensions of all these systems.
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I. INTRODUCTION

The rational Calogero model is one of the most important
and most known integrable systems invented in the 20th
century [1]. It describesN particles on a line with a pairwise
inverse-square interaction potential. Adding an external
oscillator potential preserves its integrability [2,3].
Moreover, this model, as well as its generalizations
associated with arbitrary root systems [4], were found to
be superintegrable (i.e. they possess 2N − 1 functionally
independent constants of motion) [5]. The hyperbolic
version of the Calogero model remains superintegrable [6],
while its trigonometric counterpart inherits just the inte-
grability [7]. These describe N interacting particles on a
circle or hyperbola, correspondingly. Attempts to construct
integrable analogs of such systems in higher dimensions
have been unsuccessful; see e.g. Ref. [8]. On the other
hand, all these models can be interpreted as a single particle
inN-dimensional Euclidean space subject to very particular
nonisotropic potentials. From this viewpoint it is natural
to modify their r−2 radial dependence by putting this
particle on an N-sphere or N-hyperboloid. This deforma-
tion retains the superintegrability but loses the multiparticle
interpretation.
In our recent paper [9], we have indicated that the

spherical or hyperbolic extensions of the rational
Calogero potential associated with an arbitrary Coxeter
group is the only possible superintegrable deformation of
theN-dimensional oscillator andCoulomb systems.We also
revealed explicit expressions for the constants of motion of
the Calogero-Coulomb problem on Euclidean space in both
the classical [9] and the quantum [10] cases. They involve an
analog of the Runge-Lenz vector and its related algebra.
From the other side, the hidden symmetries of the rational

Calogero-oscillator problem have been known for decades
and are well investigated [4,11]. The integrable two-center
counterpart of the Calogero-Coulomb system and an inte-
grable Calogero-Coulomb-Stark system and their symmetry
generators have been constructed as well [12].
However, it seems that the Calogero-oscillator and

Calogero-Coulomb systems extended to the N-sphere
or N-hyperboloid have not yet been investigated
properly. This is the subject of the current paper. For
arbitrary (positive) Coxeter root systems Δþ ¼ fαg, their
Hamiltonians read

H ¼ p2

2
∓ ðx · pÞ2

2r20
þ

X
α∈Δþ

g2αðα · αÞ
2ðα · xÞ2 þ VðxÞ ð1:1Þ

with

Vω ¼ ω2r20
2

x2

x20
; Vγ ¼ −

γ

r0

x0
jxj where x20 � x2 ¼ r20:

ð1:2Þ

Here, the upper/lower sign corresponds to the sphere/
hyperboloid, x and x0 are Cartesian coordinates in the
ambient (N þ 1)-dimensional space, and r0 is the radius of
the N-dimensional sphere/hyperboloid. The vectors α from
the set Δþ of positive roots uniquely characterize the
Coxeter reflections, and the coupling constants gα form
a reflection-invariant discrete function. The original
Calogero potential corresponds to the AN−1 Coxeter system
with the positive roots given in terms of the standard basis
by αij ¼ ei − ej for i < j. The reflections become the
coordinate permutations in this particular case.
In the absence of the Calogero interaction (gα ¼ 0), such

systems are reduced to the spherical and pseudospherical
Coulomb and oscillator systems, introduced a long time
ago by Schrödinger and Higgs [13,14]. These systems have
direct analogs of the hidden-symmetry generators of their
Euclidean counterparts. However, their symmetry algebras
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are essentially nonlinear even when restricted to a constant
energy surface. In the absence of the Calogero and
oscillator/Coulomb potentials, the above Hamiltonian
describes a free particle on the N-dimensional sphere/
hyperboloid. Hence, the system (1.1) with vanishing
potential VðxÞ is nothing but the spherical/hyperbolic
Calogero model associated with an arbitrary reflection
group. Particle motion near the horizon of an extremal
ð2N þ 1Þ-dimensional Perry-Myers black hole is an exam-
ple of such a system [15].
We remark that the so-defined spherical Calogero model

differs from the angular Calogero model investigated
recently in Refs. [16–19]. More precisely, the conventional
Calogero model on the N-dimensional sphere is given by
the Hamiltonian

H0 ¼
p2

2
−
ðx · pÞ2
2r20

þ
X
i<j

g2

ðxi − xjÞ2
; ð1:3Þ

while the angular Calogero HamiltonianHΩ corresponding
to the angular part of the Calogero system on (N þ 1)-
dimensional flat space is defined by

r−20 HΩ ¼ p2

2
−
ðx · pÞ2
2r20

þ
X
i<j

g2

ðxi − xjÞ2
þ
XN
i¼1

g2

ðxi − x0Þ2

with x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − x2

q
: ð1:4Þ

The goal of the current paper is to investigate the
symmetries of the Calogero-oscillator and Calogero-
Coulomb systems on the N-dimensional sphere using the
matrix-model reduction. For this purpose, first we refor-
mulate the N2-dimensional spherical oscillator/Coulomb
system on the space of Hermitian N × N matrices. Then,
reducing this system by the SUðNÞ adjoint action and
fixing specific values of its generators in a standard way, we
arrive at the desired Calogero-oscillator and Calogero-
Coulomb systems (1.1). The SUðNÞ invariant polynomials
in the matrix-model symmetry generators yield the correct
integrals of motion for the reduced system. In a similar way,
we find an integrable Calogero-Coulomb-Stark system on
the sphere. We restrict ourselves to the spherical AN−1
Calogero model (1.3) supplemented by the potentials (1.2).
We do not consider the hyperboloid case, since the
transition from the spherical one is straightforward.
The paper is organized as follows: In Sec. II, we present

general properties of the classical oscillator and Coulomb
systems on the sphere in a parametrization relevant for our
purposes. In Sec. III, we construct the symmetry generators
of the classical Calogero-oscillator and Calogero-Coulomb
systems on the N-dimensional sphere using the matrix-
model reduction. In Sec. IV, we present the Calogero-
Coulomb-Stark system and briefly discuss the spin
generalizations of considered models.

II. PRELIMINARY: OSCILLATOR AND
COULOMB SYSTEMS ON THE SPHERE

Let us briefly describe, following Ref. [14], the Coulomb
and oscillator systems on an N-dimensional sphere of
radius r0, in parametrized N Cartesian coordinates of the
ambient (N þ 1)-dimensional space. In this parametriza-
tion, the sphere metric can immediately be obtained by the
restriction of the flat metric on RNþ1:

ds2 ¼ hijdxidxj ¼ dx2 þ dx20jx20þx2¼r2
0
¼ dx2 þ ðx · dxÞ2

r20 − x2
:

ð2:1Þ

The phase space of the systems on the sphere is given by
its cotangent bundle equipped with the canonical sym-
plectic structure dp∧dx and the canonical Poisson
brackets fpi; xjg ¼ δij. In these terms, the SOðN þ 1Þ
isometries of the sphere are given by the generators
ðLμνÞ ¼ ðL0i; LijÞ via

L0i ¼ x0pi; Lij ¼ xipj − xjpi; and

fLμν; Lρλg ¼ δμλLνρ þ δνρLμλ − δμρLνλ − δνλLμρ; ð2:2Þ

where x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − x2

p
. The above soðN þ 1Þ algebra

decomposes as

fL0i; L0jg ¼ Lij; fL0i; Lkjg ¼ δikL0j − δijL0k; ð2:3Þ

fLij; Lklg ¼ δilLjk þ δjkLil − δikLjl − δjlLik; ð2:4Þ

where the Lij’s generate the soðNÞ subalgebra.
The oscillator on the N-dimensional sphere is defined by

the Hamiltonian [14]

Hω ¼ p2

2
−
ðx · pÞ2
2r20

þ ω2r20
2

x2

x20
: ð2:5Þ

The symmetries of this Hamiltonian are given by the
generators of the SOðNÞ angular momentum Lij defined
in (2.2) and the hidden-symmetry generators

Iij ¼
x20
r20

pipj þ
ω2r20
x20

xjxj: ð2:6Þ

Note that these expressions can be obtained from those of
the flat oscillator by the replacement

xi →
r0
x0

xi; pi →
L0i

r0
¼ x0

r0
pi: ð2:7Þ

The symmetry algebra of the spherical system is essentially
nonlinear [14]:
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fLij; Iklg ¼ δjkIil − δilIjk − δikIjl þ δjlIik; ð2:8Þ

fIij; Iklg ¼ −ω2ðδilLjk þ δjkLil þ δikLjl þ δjlLikÞ

−
1

r20
ðIilLjk þ IjkLil þ IikLjl þ IjlLikÞ: ð2:9Þ

The Hamiltonian can be expressed in terms of the sym-
metry generators,

Hω ¼ 1

2

X
i

Iii þ
L2

2r20
; where L2 ¼

X
i<j

L2
ij: ð2:10Þ

In the r0 → ∞ limit, the generators Lij and Iij reduce,
respectively, to the angular momentum and Fradkin
tensors. Together they form the SUðNÞ Poisson bracket
algebra, which describes the symmetries of the standard
N-dimensional oscillator [20].
The Coulomb system on the N-dimensional sphere

possesses a similar structure [14]. It is defined by the
Hamiltonian

Hγ ¼
p2

2
−
ðx · pÞ2
2r20

−
γ

r0

x0
x

with x ¼
ffiffiffiffiffi
x2

p
: ð2:11Þ

Its symmetry involves the SOðNÞ angular momentum
tensor Lij and the analog of the Runge-Lenz vector,

Ai ¼
x0
r0

X
j

Lijpj −
γxi
x

: ð2:12Þ

The square of the latter involves the energy,

A2 ¼
�
2Hγ −

L2

r20

�
L2 þ γ2: ð2:13Þ

It is easy to see that the expression for the Runge-Lenz
vector on the sphere can again be obtained from the one on
flat space by the replacement (2.7). The symmetry algebra
is given by the relations (2.4) and by

fLij; Akg ¼ −δikAj þ δjkAi;

fAi; Ajg ¼ 2

�
Hγ −

L2

r20

�
Lij: ð2:14Þ

In the flat-space limit and on a fixed energy level, it is
reduced to the SOðN; 1Þ or SOðN þ 1Þ symmetry for
positive or negative energy, correspondingly.

III. SPHERICAL CALOGERO-COULOMB
AND CALOGERO-OSCILLATOR FROM

MATRIX MODELS

In this section, we construct the spherical Calogero-
oscillator and Calogero-Coulomb systems using the

matrix-model reduction. More precisely, we consider the
usual spherical oscillator and Coulomb systems on the
space of N × N Hermitian matrices and then reduce them
by the adjoint SUðNÞ action. As a result, we get the
spherical Calogero-oscillator and Calogero-Coulomb sys-
tems suggested in Ref. [9]. This approach allows us to find
explicit expressions for all symmetry generators (including
the hidden ones). In addition, it is immediately generalized
to superintegrable spin extensions of these models, as
well as to an integrable spherical Calogero-Coulomb-
Stark model.

A. Calogero-oscillator on the sphere

Let us define the Hermitian matrix model for the
oscillator on the sphere by the Hamiltonian

Hmat
ω ¼ 1

2
tr P2 −

1

2r20
ðtrPXÞ2 þ ω2r20

2

trX2

r20 − trX2
: ð3:1Þ

Here P and X are Hermitian matrices containing, respec-
tively, N2 momenta and coordinates:

P ¼
XN2

a¼1

PaTa; X ¼
XN2

a¼1

XaTa: ð3:2Þ

We have introduced a basis of orthonormalized UðNÞ
generators,

½Ta;Tb� ¼ {
X
a

fabcTc; trTaTb ¼ δab: ð3:3Þ

Their explicit form can be set, in particular, by choosing N
matrices to be diagonal,

Tði−1ÞNþi ¼ Ei;i; 1 ≤ i ≤ N; ð3:4Þ

where Ei;j has vanishing entries except for one in the ith
row and jth column:

½Ei;j�i0j0 ¼ δii0δjj0 : ð3:5Þ

The remaining Ta’s are selected from the following set of
the NðN − 1Þ off-diagonal matrices:

Tðj−1ÞNþi ¼
1ffiffiffi
2

p ðEj;i þEi;jÞ;

Tði−1ÞNþj ¼
{ffiffiffi
2

p ðEj;i −Ei;jÞ; 1 ≤ j < i ≤ N: ð3:6Þ

In terms of the phase-space variables ðPa; XaÞ, the
equivalence of the matrix model (3.1) to the
Hamiltonian of the N2-dimensional spherical oscillator
(2.5) becomes transparent:
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Hmat
ω ¼ 1

2

X
a

P2
a −

1

2r20

�X
a
XaPa

�
2

þ r20
x20

ω2x2

2
; ð3:7Þ

with x and x0 defined by

x2 ¼
XN2

a¼1

X2
a; x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − x2

q
: ð3:8Þ

According to the previous section, the above system
remains invariant under the action of the angular momen-
tum and hidden symmetry generators

Lab ¼ XaPb − XbPa; Iab ¼
x20
r20

PaPb þ
ω2r20
x20

XaXb:

ð3:9Þ

These constants of motion obey Poisson bracket relations
similar to (2.4), (2.8) and (2.9). They can be presented in
matrix form:

L ¼
X
a;b

LabTa ⊗ Tb ¼ X∧P; ð3:10Þ

I ¼
X
a;b

IabTa ⊗ Tb ¼
x20
r20

P ⊗ Pþ ω2r20
x20

X ⊗ X: ð3:11Þ

The matrix Hamiltonian (3.1) remains invariant under the
adjoint SUðNÞ action:

P → UPUþ; X → UXUþ: ð3:12Þ

The related Noether current is given by a traceless
Hermitian matrix with suðNÞ-valued entries,

J ¼ {½X;P�; Ja ¼ tr JTa ¼ −
1

2

X
b;c

fabcLbc;

fJa; Jbg ¼
X
c

fabcJc: ð3:13Þ

To perform the reduction, we diagonalize the coordinate
matrix by the use of an SUðNÞ transformation (3.12). Then
we fix the level surface J ¼ const and take into account that
the diagonalization of the coordinate matrix leads to the
vanishing of the diagonal entries of J. The following level
surface reproduces the Calogero potential:

Jij ¼ gðδij − 1Þ: ð3:14Þ

As a result, the phase-space variables are mapped to
[1,4,21]

Xij ¼ xiδij and Pij ¼ piδij þ {g
1 − δij
xi − xj

: ð3:15Þ

Their diagonal entries define the coordinates and momenta
of theN-dimensional Calogero system. Only these preserve
the canonical Poisson bracket relations. Nevertheless, we
keep the same notation for the reduced matrices (3.15).
Note that the reduced momentum matrix Pij corresponds to
the Lax matrix of the standard Calogero system [3].
Using the expressions for the UðNÞ generators (3.4) and

(3.6), we get an explicit form of the orthogonal coordinates
(3.2) under the reduction:

Xðj−1ÞNþi ¼
�
xi for i ¼ j;

0 for i ≠ j;

Pðj−1ÞNþi ¼

8>><
>>:

pi for i ¼ j;ffiffi
2

p
g

xi−xj
for i < j;

0 for i > j:

ð3:16Þ

Consequently, the matrix model (3.1) is reduced to the
Calogero-oscillator model on the N-dimensional sphere,

Hω ¼ p2

2
−
ðx · pÞ2
2r20

þ
X
i<j

g2

ðxi − xjÞ2
þ ω2r20

2

x2

x20
: ð3:17Þ

Thus, the above system can be obtained from the N2-
dimensional Higgs oscillator by projecting into the orbits of
the adjoint group action (3.12). This projection breaks the
Poisson structure: it respects the brackets only among the
observables invariant with respect to the reduction group.
Therefore, only the SUðNÞ invariant constants of motion of
the matrix system remain constants in the projected system.
They are built by taking an appropriate combination of the
elements (3.9), which are preserved under the group action
(3.12). In particular, one can construct the following two
sets of SUðNÞ invariants from the angular momentum and
hidden-symmetry generators:

L2k ¼ ðtr ⊗ trÞL2k; Ik ¼ ðtr ⊗ trÞIk; k ¼ 1; 2; 3;…;

ð3:18Þ

where the left (right) trace from the tensor product tr ⊗ tr is
performed over the left (right) factor in the tensor products
(3.10) and (3.11). Substituting the explicit expressions
obtained from (3.10), (3.11), and (3.15) into the above
equations, we arrive at the integrals of motion of the
Calogero-oscillator system on the sphere (3.17). Note that
the integrals L2kþ1 vanish, since the angular momentum
tensor is antisymmetric.
Already the above integrals form an overcomplete set of

constants of motion, with enough functionally independent
ones to ensure the superintegrability of the system (3.17)
discovered in Ref. [9]. Nevertheless, we can construct
constants of motion from more general SUðNÞ invariants.
They are obtained from Lab and Iab using the SUðNÞ
invariant tensors in the adjoint representation,
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da1…al ¼ trTa1…Tal : ð3:19Þ

According to (3.3), (3.4) and (3.6),

da ¼
XN
k¼1

δka; dab ¼ δab; dabc − dbac ¼ {fabc:

ð3:20Þ

Note that the vector da projects to the U(1) generator of the
unitary group given by the identity matrix. The higher-rank
tensors are more complicated. As a consequence of the
completeness condition obeyed by the basis (3.3), they may
be expressed in terms of the dabc by a successive appli-
cation of the formula

X
c

da1…akcdcb1…bl ¼ da1…akb1…bl : ð3:21Þ

Here is an example of a mixed fourth-order (in momenta)
invariant:

X
a;a0;…

dabcda0b0c0Laa0Lbb0Icc0 : ð3:22Þ

In this context, the integrals (3.18) can be defined alter-
natively as

L2k ¼
X

a1;b1…;a2k;b2k

da1…a2kdb1…b2kLa1b1…La2kb2k ; ð3:23Þ

Ik ¼
X

a1;b1…;ak;bk

da1…akdb1…bkIa1b1…Iakbk : ð3:24Þ

By contracting adjacent indices with a Kronecker delta, we
arrive at another simple set of invariants,

L0
2k ¼

X
a1…ak

La1a2La2a3…La2ka1 ¼ Tr L2k; ð3:25Þ

I 0
k ¼

X
a1…ak

Ia1a2Ia2a3…Iaka1 ¼ Tr Ik: ð3:26Þ

Here the rank-four tensors (3.10) and (3.11) are treated as
ordinary matrices with entries Iab and Lab correspondingly,
i.e. ½I�ab ¼ Iab and ½L�ab ¼ Lab. Their counterparts with
“free boundaries” are obtained by saturating the first and
last indices with the invariant vector da. For example,

I 00
k ¼

X
i;a2…ak;j

Iia2Ia2a3…Iakj ¼
XN
i;j¼1

ðIkÞij: ð3:27Þ

Let us derive now the explicit form for the second-order
(in momentum) integrals. The invariant L2 corresponds to
the angular part of the pure Calogero model, whose

integrals of motion have been constructed already [17].
It can be presented in terms of the momentum and angular
momentum (2.2) as

L2 ¼ 2
X
i<j

�
L2
ij þ

2g2x2

ðxi − xjÞ2
�
: ð3:28Þ

It is equivalent to the (N − 1)-dimensional HamiltonianHΩ
(1.4) from the Introduction with the replacement x → r0
and xN → x0.
Of course, the constructed integrals are subject to

algebraic relations since only 2N − 1 of them are func-
tionally independent. The first members of the families
(3.24) and (3.27) coincide and are equal to

I1 ¼ I 00
1 ¼

�
x0P
r0

�
2

þ
�
ωr0X
x0

�
2

with

X ¼
XN
i¼1

xi; P ¼
XN
i¼1

pi: ð3:29Þ

It is easy to see also that L0
2 ¼ −L2 and I 0

2 ¼ I2. The
Hamiltonian itself is expressed through the constructed
integrals as

Hω ¼ 1

2
I 0
1 þ

L2

4r20
: ð3:30Þ

Moreover, the families (3.25), (3.26) and (3.27) do not give
rise to new constants of motion. Indeed, the rank-two
matrices Lab and Iab are subject to the third-order relations

L3 þ L2

2
L ¼ 0; I3 − I 0

1I
2 þ ω2L2

2
I ¼ 0; ð3:31Þ

and the surviving first members are already given by (3.29).
In the flat-space limit, r0 → ∞, we obtain the Calogero

model with oscillator potential [2]. The generators (3.10)
and (3.11) constitute the pure UðN2Þ symmetry of the initial
matrix HamiltonianHmat

ω . Apart from the Noether integrals
(3.13), the other SUðNÞ integrals may be expressed in terms
of matrix analogs of holomorphic and antiholomorphic
variables [1]. In terms of the current phase variables, these
quantities are

C ¼ 1

2ω
P2 þ ω

2
X2 þ 1

2
J;

Cc ¼
ω

2
Jc þ

1

2ω

X
a;b

dabcIab;

fCa; Cbg ¼
X
c

fabcCc: ð3:32Þ

According to our procedure, the constants of motion of the
reduced HamiltonianHω for r0 → ∞, corresponding to the
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aforementioned integrals, can be constructed in the follow-
ing way:

Ck ¼ trCk ¼
X

a1;…;ak

da1…akCa1…Cak: ð3:33Þ

In fact, Ck is a kth-order Casimir element of the suðNÞ
Poisson algebra for 1 ≤ k ≤ N. Therefore, they are in
involution, fCk; Clg ¼ 0, and constitute a system of
Liouville integrals for the Calogero model in the external
oscillator potential [1]. The first element coincides with the
Hamiltonian: Hω ¼ ωC1.

B. Calogero-Coulomb on the sphere

The Hermitian matrix model for the Coulomb system on
the sphere is defined by the Hamiltonian

Hmat
γ ¼ 1

2
tr P2 −

1

2r20
ðtr PXÞ2 − γ

�
1

trX2
−

1

r20

�1
2

: ð3:34Þ

In terms of the phase-space variables ðPa; XaÞ, the matrix
Hamiltonian (3.34) becomes identical to the Hamiltonian of
the spherical Coulomb system (2.11),

Hmat
γ ¼ 1

2

X
a

P2
a −

1

2r20

�X
a
XaPa

�
2

−
γ

r0

x0
x
; ð3:35Þ

with x and x0 defined by (3.8). Apart from the kinematical
angular momentum tensor (3.10), it has a conserved
Runge-Lenz vector (2.12) given by

Aa ¼
x0
r0

X
b

LabPb −
γXa

x
: ð3:36Þ

The latter can be presented through the Hamiltonian,

Aa ¼
�
2x0
r0

Hmat
γ þ x0

r30
ðx · pÞ2 − 2γx

r20
þ γ

x

�
Xa −

x0
r0

ðx · pÞPa;

ð3:37Þ

and the corresponding matrix reads

A ¼
X
a

AaTa ¼
x0
r0

ðX tr P2 − P trXPÞ − γ

x
X: ð3:38Þ

The symmetry generators Lab and Aa obey the Poisson
brackets of the Coulomb system on the sphere; see (2.4)
and (2.14).
The SUðNÞ reduction procedure implemented above for

the Calogero-oscillator system on the sphere remains valid
in this case too. The matrix-model Hamiltonian (3.34) can
be reduced by the symmetry (3.12) to the Calogero-
Coulomb model on the N-dimensional sphere,

Hγ ¼
p2

2
−
ðx · pÞ2
2r20

þ
X
i<j

g2

ðxi − xjÞ2
−

γ

r0

x0
x
; ð3:39Þ

where the matrix coordinates Pa and Xa are defined
in (3.16).
The symmetries of the reduced system are described

by symmetric polynomials in the reduced angular momen-
tum Lab and Runge-Lenz vector Ac, with indices coupled
by the SUðNÞ invariant tensors (3.19) as in the example
below,

X
a;a0;…

dabcda0b0c0Laa0Lbb0AcAc0 ; ð3:40Þ

with da1…ak defined by (3.19). The invariants depending
only on the angular momentum variables agree with L2k as
defined in (3.23). They are complemented to a full set of
integrals by the following simple family of invariants:

Ak ¼ trAk ¼
X

a1;…;ak

da1…akAa1…Aak: ð3:41Þ

Let us write down explicit expressions for the first two
integrals from this family. Using the representation (3.37),
we immediately get

A1 ¼
�
2x0
r0

Hγ þ
x0
r30

ðx · pÞ2 − 2γx
r20

þ γ

x

�
X −

x0
r0

ðx · pÞP;

ð3:42Þ

where X and P are defined in (3.29). As a direct
consequence of (2.13), the second integral is expressed
via the Hamiltonian (3.39) and the angular Calogero
Hamiltonian,

A2 ¼
�
Hγ −

L2

4r20

�
L2 þ γ2: ð3:43Þ

Thus, using the method of matrix-model reduction, we
construct a complete set of constants of motion for the
Calogero-oscillator and Calogero-Coulomb models on the
N-dimensional sphere.

IV. GENERALIZATIONS

A. Calogero-Coulomb-Stark on the sphere

Consider an integrable generalization of the Coulomb-
Stark system to the sphere [22],

Hγ;F ¼ Hγ þ
x0
r0

ðF · xÞ; ð4:1Þ

where Hγ is given by (2.11) and F is an analog of the
constant electric field in the planar limit. This system lacks
superintegrability but still remains integrable. Its constants
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of motion are given by the angular-momentum components
orthogonal to the electric field direction,

L⊥
ij ¼ Lij þ ninkLjk − njnkLik; ð4:2Þ

and a modified longitudinal component of the Runge-Lenz
vector on the sphere (3.36) given by Ref. [22],

A ¼ n · A −
F
2
ðx2 − ðn · xÞ2Þ; ð4:3Þ

where we introduced the field strength F ¼ jFj and the
field direction n ¼ F=F.
The matrix-model reduction described in the previous

section can be applied to the extension of the system (4.1)
by a Calogero potential. The electric field is now charac-
terized by a matrix proportional to the identity, to ensure
the SUðNÞ invariance of the Stark term under the adjoint
action (3.12):

F ¼ Fffiffiffiffi
N

p 1 ¼ Fffiffiffiffi
N

p
XN
k¼1

Tk; tr FX ¼ Fffiffiffiffi
N

p trX: ð4:4Þ

Therefore, the matrix-model analog of the system on the
sphere (4.1) takes the form

Hmat
γ;F ¼ Hmat

γ þ Fffiffiffiffi
N

p x0
r0

trX ¼ Hmat
γ þ Fffiffiffiffi

N
p x0

r0

XN
k¼1

Xk;

ð4:5Þ

with Hmat
γ given by (3.34). In other words, the field matrix

is tangent to the U(1) center of the unitary group, and the
unit vector along that direction is given by the invariant
vector (3.20) as na ¼ da=

ffiffiffiffi
N

p
. So, the conserved trans-

versal components of the angular momentum (4.2) acquire
the form

L⊥
ab ¼ Lab þ

1

N

XN
k¼1

ðdaLbk − dbLakÞ; ð4:6Þ

where the first equation in (3.20) has been used.
The modified component of the Runge-Lenz vector

tangent to the U(1) center is given by

A ¼ 1ffiffiffiffi
N

p trA −
F
2

�
trX2 −

1

N
ðtrXÞ2

�
: ð4:7Þ

Reducing the matrix model (4.5) by the SUðNÞ
group action, we arrive at the Calogero-Coulomb-Stark
Hamiltonian on the sphere:

Hγ;F ¼ Hγ þ
Fffiffiffiffi
N

p x0
r0

X ; ð4:8Þ

with X given in (3.29).
Projecting the matrix-model integrals (4.6) and (4.7) to

the SUðNÞ invariant orbits in the usual way, we arrive at the
following constants of motion for the above Hamiltonian:

L⊥
2k ¼

X
a1;b1…;a2k;b2k

da1…a2kdb1…b2kL
⊥
a1b1

…L⊥
a2kb2k

; ð4:9Þ

A ¼ 1ffiffiffiffi
N

p A1 −
F
2

�
x2 −

X 2

N

�
; ð4:10Þ

where the definition (3.42) is taken into account. The above
constants of motion ensure the integrability of the system.
In the r0 → ∞ limit, the Hamiltonian (4.8) describes the

Calogero-Coulomb-Stark problem in flat space, which has
been introduced and studied in Ref. [12] using the Dunkl
operator approach.

B. Spin extensions

The aforementioned systems on the sphere can be
endowed with an additional classical spin while retaining
their integrability or superintegrability. Such extensions
have been studied in the flat-space limit for the Calogero
model using the Lax pair technique, by introducing internal
degrees of freedom lij into the inverse-square potential of
the system (3.17) [23]. In particular, the Calogero-oscillator
Hamiltonian on the sphere (3.1) with classical spins has the
following form:

Hspin
ω ¼ p2

2
−
ðx · pÞ2
2r20

þ
X
i<j

l2ij
ðxi − xjÞ2

þ ω2r20
2

x2

x20
: ð4:11Þ

The spin dynamic variables lij obey soðNÞ angular
momentum Poisson bracket relations (2.4), but they are
in involution with the variables pi and xi describing the
motion on the sphere. They can be recast into a spin degree
of freedom S related to each coordinate: lij ¼ Si · Sj [24].
Actually, the classical spin lij can be obtained also from

the matrix-model reduction procedure [1,8,24]. Remember
that the Noether generators (3.13) form a traceless
Hermitian matrix, and so far we took the minimal gauge
(3.14) for them. Let us instead apply a spin gauge by
imposing a weaker condition: Jij ¼ {lij. Using the anti-
symmetry of the lij, the conventional Lax matrix (3.15) gets
replaced by

Pij ¼ piδij − ð1 − δijÞ
lij

xi − xj
: ð4:12Þ

The construction scheme for the integrals of motion
described in Sec. III can be extended to the spin case too.
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The integrals are given by the SUðNÞ invariant polynomials
built from the spin matrix lij and the reduced matrices Xij

and Pij. In the flat-space limit, the algebra of integrals of
the Calogero system with and without oscillator terms has
been studied in this context in Ref. [25].

V. CONCLUDING REMARKS

We have defined the classical rational Calogero model
with an oscillator or Coulomb potential on the sphere or
hyperboloid. This may be viewed as the oscillator or
Coulomb system on the sphere or hyperboloid, as intro-
duced, respectively, by Higgs and Schrödinger [13,14],
amended by a Calogero interaction term. This system
looks similar to, but is distinct from, the angular part of
the Calogero model in the ambient (N þ 1)-dimensional
flat space. Both systems, however, share features such as
superintegrability, a Lax pair, and matrix-model
descriptions.
We have focused on the constants of motion for the

Calogero-oscillator and Calogero-Coulomb systems on
the sphere. They were obtained from the kinematical and
hidden dynamical symmetries of the related Hermitian
matrix models by a Hamiltonian reduction. We have
expressed the constants of motion of the reduced systems

as SUðNÞ invariant polynomials depending on the well-
known integrals of the original matrix model. We also have
studied the spherical generalization of the Calogero-
Coulomb system in an external electric field, i.e. with a
Stark term, and briefly discussed the effect of additional
spin degrees of freedom.
In a forthcoming paper, we will extend the construction

carried out here to the quantum case [26]. It will be
interesting to consider in this context the spherical
Calogero models associated with general Coxeter root
systems.
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