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Abstract. The paper analyzes research data on the structure and properties of surface layers of 

commercially pure A7-grade aluminum subjected to treatment that combines deposition of a 

thin metal film, intense pulsed electron beam irradiation, and nitriding in low-pressure arc 

plasma. The analysis shows that the combined method of surface modification provides the 

formation of a multilayer structure with submicro- and nano-sized phases in the material 

through a depth of up to 40 m, allowing a manifold increase in its surface microhardness and 

wear resistance (up to 4 and 9 times, respectively) compared to the material core. The main 

factors responsible for the high surface strength are the saturation of the aluminum lattice with 

nitrogen atoms and the formation of nano-sized particles of aluminum nitride and iron 

aluminides. 

1. Introduction 

The low hardness and the low wear resistance of aluminum limit the application of the material and its 

alloys in industry [1]. Generally, the service characteristics of materials are increased by hardening of 

their surface layers [2–4]. One of the widely used methods of surface hardening is thermochemical 

treatment [5]. Although the method has a series of advantages (possibilities to treat elements of any 

shape, large difference between surface and core properties, etc.), its use for treatment of aluminum 

suffers form serious shortcomings: the long process time; the presence of an oxide film on the surface 

of aluminum and its alloys, being a barrier to nitrogen supply to the surface; the formation of an 
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aluminum nitride film on the surface, which prevents the penetration of nitrogen deep into the material 

and complicates the supply of potential to it during ion nitriding. 

Here we analyze the structure and properties of commercially pure aluminum subjected to 

treatment that combines deposition of a thin metal film, intense pulsed electron beam irradiation, and 

nitriding in low-pressure arc plasma. 

2. Material and research technique 

The material under study was commercially pure aluminum of grade А7 (aluminium1070: 0.16Fe, 

0.15Si, 0.04Zn, 0.03Mn, 0.02Mg, 0.01Ti, 0.01Cu, and the rest is Al). The Al specimens were 4.5-mm 

thick plates sized to 15×15 mm. Their modification was as follows. First, a  steel film 0.5 m thick 

was deposited on the Al surface using a Kvinta setup [6]; the steel was 12Cr18Ni10Ti (AISI 321: 

0.12C, 11Ni, 19Cr, 1Ti, 2Mn, 0.8Si, 0.3Cu, 0.02S, 0.035P, and the rest is Fe). Then, the film–substrate 

system was irradiated with an intense pulsed electron beam on a SOLO setup at 17 keV, 30 J/cm
2
, 200 

s, and 0.3 Hz; the number of pulses was 10 and 20 [7]. Finally, the specimens were nitrided on a 

NNV-6.6-I1 setup equipped with a PINK plasma generator [8]. For nitriding, a negative bias with a 

frequency of 50 kHz was applied to the specimens; the bias amplitude and the pulse duty factor were 

varied. The nitriding temperature was measured with a chromel-alumel thermocouple fixed on the 

specimen holder and was 540 
0
С. The nitriding times was 8 h. The hardness and the elastic (Young’s) 

modulus of the specimens were measured in mechanical tests using a PMT-3 device with a Vickers 

indenter at a load of 0.2 N and 0.5 N and a Shimadzu DUH-211S ultra micro hardness tester at an 

indenter load of 10–300 mN. The wear rate was determined in tribological tests on a CSEM S/N 07-

142 high-temperature tribometer by estimating the wear track cross-sectional area with a Micro 

Measure 3D station. The defect structure was examined using a Philips SEM-515 scanning electron 

microscope (SEM) and a JEOL JEM-2100F transmission electron microscope (TEM). The phase 

composition and the lattice state of surface layers were analyzed using a Shimadzu XRD-7000s 

diffractometer. 

3. Results and discussion 

3.1. Nitriding of aluminium in low-pressure arc plasma 

Our study shows that when nitrided, the Al surface layer assumes an island structure (Fig. 1, a). The 

lateral size of islands is up to 5 m and the size of their substructure is 100–500 nm (Fig. 1, b). The 

average height of islands estimated by interference microscopy (MNP-1 device) is 1.75 m. 

According to X-ray diffraction analysis, the main phase (≈84 mass%) in the nitrided layer is AlN 

(space group P63mc [9, 10]) with lattice parameters a = 0.31165 nm and c = 0.49879 nm; the size of 
–3

. 

The second phase is Al with a 
–3

. 

Electron diffraction analysis of thin foils shows that the AlN islands have a columnar structure with 

lateral sizes of columns of 0.4–0.5 m (Fig. 2, a). The columns have a nanocrystalline substructure 

with a crystallite size of 15–25 nm (Fig. 2, b). 

Indexing of the diffraction patterns (Fig. 2, c, d) reveals reflections that belong to the AlN lattice 

(space group Р63mc, main phase) and Al lattice (space group Fm3m). In most cases, the reflections of 

the AlN and Al lattices are overlapped, and their confident identification by electron diffraction 

analysis is difficult. Comparing the data of X-ray and electron diffraction analyses, it can be noted that 

the sizes of coherent scattering regions of AlN agree well with the sizes of crystallites revealed by 

electron microscopy. 
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Figure 1. SEM images of the Al surface structure after nitriding in low-pressure arc plasma. 

 

 

Figure 2. Structure of commercially pure aluminum nitrided in low-pressure arc plasma: a, b – bright 

fields; c – electron diffraction pattern; d – indexing (diffraction rings in the upper part correspond to 

AlN, and in the lower pat, to Al with reflections: 1 – [111], 2 – [200], 3 – [220], 4 – [113]). 

 

The nitride layer is separated from the adjacent Al volume by a sharp boundary along which chains 

of pores with a size of 10–50 nm are observed (Fig. 3, white arrows). The Al volume adjacent to the 

nitride layer has a fragmented (subgrain) structure, suggesting the formation of thermal stresses in the 

nitrided material and their subsequent relaxation (Fig. 3, b). The fragment size varies from 1 m to 2 

m. In the fragment volume, there is a substructure of chaotically distributed dislocations. 

Thus, the study demonstrates that nitriding in low-pressure arc plasma provides the formation of a 

thin (2–4 m) nanocrystalline surface layer with an island structure in commercially pure aluminum. 

The nitride layer is separated from the main material volume by an interlayer containing micropores. 

3.2. Nitriding of aluminium in low-pressure arc plasma 

To improve the nitriding efficiency, a 12Cr18Ni10Ti film was deposited on the surface of A7 

aluminum, and then, the film–substrate system was nitrided in low-pressure arc plasma. Data of 

nanoindentation showed that when nitrided, the film–substrate system was hardened through a depth 

of no more than 1 m. Therefore, before nitriding, the film–substrate system was irradiated with an 

intense electron beam, and the thus formed surface alloy was nitrided in low-pressure arc plasma. 
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Measurements of the hardness show that a hardened layer of thickness up 30 m is formed in the 

system during nitriding; the microhardness of the nitrided surface layer is more than 4 times higher 

than that of the specimen volume. The modified specimens were subjected to tribological testing. It is 

shown that the combined method of surface modification increases the wear resistance of the material 

9 times and decreases the friction coefficient 1.3 times. 

 

 

Figure 3. Structure of commercially pure aluminum nitrided in low-pressure arc plasma; the pores 

along the interface between the nitride layer and the main Al volume are shown by arrows. 

 

After combined modification, the material reveals a multilayer structure consisting of a surface 

layer (Fig. 4, layer 1), a transition layer (Fig. 4, layer 2), and a heat-affected layer.  

 

 

Figure 4. Structure of 12Cr18Ni10Ti film-coated A7 aluminum after electron beam treatment and 

subsequent nitriding in low-pressure arc plasma (the nitrided surface is marked by arrows): 1 – surface 

layer; 2 – transition layer. 

The surface layer has an island structure similar to that presented in Fig. 1 and Fig. 2; the average 

height of islands is 3.45 m. The islands represent aluminum nitride, as evidenced by transmission 

electron microscopy, scanning transmission electron microscopy, and X-ray diffraction analysis. There 

is also a small amount of particles of α-Fe-based solid solution. 

The transition layer is up to 40 m and represents aluminum hardened by second phase particles 

(Fig. 4, layer 2). As shown by TEM and STEM, the inclusions are aluminum nitrides, aluminides, and 

α-Fe(Cr, Ni, Al). In the layer adjacent to the columnar structure, the size of second phase particles is 

100–250 nm. With depth from the modified surface, the number of particles per unit area decreases 

and so does their size (Fig. 4). 

1 m 

2 1 
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The main volume of the material and its modified surface layer are separated by a heat-affected 

zone in which a band structure typical for deformed aluminum arises. Apparently, the strains in the 

material are induced by thermoelastic stresses that arise in its surface layer at the stage of intense 

electron beam irradiation [11, 12]. 

Reasoning from the mechanical properties, tribological characteristics, and structural phase state of 

the modified material, it can be concluded that the increase in its surface microhardness and wear 

resistance is due to several physical mechanisms of hardening: (1) saturation of the Al lattice with 

nitrogen atoms, (2) precipitation of submicro- and nano-sized second phase particles, including 

aluminum nitride particles, and (3) band substructure formation in its heat affected zone. 

4. Conclusion 

Thus, we analyzed the structure and properties of commercially pure A7 aluminum after combined 

surface modification that included electron beam irradiation of the material coated with a 

12Cr18Ni10Ti steel film and its subsequent nitriding in low-pressure arc plasma. It is shown that the 

combined method of surface modification increases the wear resistance of the material more than 9 

times and the microhardness more than 4 times while decreasing the friction coefficient 

The increase in the strength and tribological properties of the material is due to several physical 

mechanisms of hardening: (1) saturation of the Al lattice with nitrogen atoms, (2) precipitation of 

submicro- and nano-sized second phase particles, including aluminum nitride particles, and (3) band 

substructure formation in the heat affected zone. 

 

Acknowledgments 

The work was supported by the Russian Foundation for Basic Research (project No. 16-58-00075 

Bel_a). 

5. References 

[1] Belov N A 2010 Phase composition of commercial and advanced aluminum alloys (Moscow, 

MISiS) 

[2] Berlin Е В, Koval N N and Seidman L A 2012 Plasma thermochemical surface treatment of 

steel parts (Moscow: Tekhnosfera) 

[3] Budilov V V, Koval N N, Kireev R M and Ramazanov K N 2013 Integrated methods of 

treatment of structural and tool materials with glow and vacuum arc discharges (Moscow: 

Mashinostroenie).  

[4] Gribkov V A, Grigoriev F I, Kalin B А and Yakushin V L 2001 Advanced radiation beam 

technologies for material treatment (Moscow: Kruglyi God) 

[5] Lakhtin Yu M and Arzamasov VN 1984 Thermochemical treatment of metals (Moscow: 

Metallurgia) 

[6] Shugurov V V, Kalushevich A A, Koval N N, Denisov V V and Yakovlev V V 2012 Izv. Vyssh. 

Uchebn. Zaved. Fiz. 12/3 118 

[7] Ivanov Yu F and Koval N N 2007 (Structure and properties of advanced metal materials), A I 

Potekaev, Ed. (Tomsk: Izd. Nauch. Tekh. Lit.) 345 

[8] Ivanov Yu F, Akhmadeev Yu H, Lopatin I V, Petrikova E A, Krysina O V and Koval N N 2015 

J. Phys.: Conf. Ser. 652 012013 

[9] Wriedt H A 1986 Bulletin of Alloy Phase Diagrams 7 4 RIVERS 329 

[10] Vol A E 1959 Structure and properties of binary metal systems. 1 (Moscow: Gos. Izd. Fiz. Mat. 

Lit.) 

[11] Rotshtein V, Ivanov Yu and Markov A 2006 Materials surface processing by directed energy 

techniques Y. Pauleau, Ed. (London: Elsevier) chapter 6 205. 

[12] Laskovnev A P, Ivanov Yu F, Petrikova E A e.a. 2013 Electron-ion plasma modification of the 

structure and properties of eutectic silumin (Minsk: Belarus. Nauka) 

5

XII International Conference Radiation-thermal Effects and Processes in Inorganic Materials         IOP Publishing
IOP Conf. Series: Materials Science and Engineering 168 (2017) 012043  doi:10.1088/1757-899X/168/1/012043




